УДК 539.3

Канд. техн. наук В. С. Левада, канд. физ.-мат. наук В. К. Хижняк, канд. техн. наук Т. И. Левицкая

Национальный технический университет, г. Запорожье

ИЗГИБ ПОЛУБЕСКОНЕЧНОЙ АНИЗОТРОПНОЙ ПЛАСТИНЫ С ЖЕСТКО ЗАКРЕПЛЕННЫМ КРАЕМ, НАХОДЯЩЕЙСЯ ПОД ДЕЙСТВИЕМ СОСРЕДОТОЧЕННОЙ НАГРУЗКИ

Получено точное решение задачи изгиба полубесконечной анизотропной пластины с жестко закрепленным краем, находящейся под действием сосредоточенной нагрузки. Решение выражено в замкнутой форме через элементарные функции. Построена функция Грина соответствующей краевой задачи.

Ключевые слова: изгиб, анизотропная пластина, сосредоточенная нагрузка, жесткое закрепление, функция Грина, краевая задача.

Задачи о локальных воздействиях на элементы конструкций издавна привлекали внимание исследователей. Решение таких задач стремятся получить в замкнутом виде относительно элементарных или других легко вычисляемых функций. При решении задачи изгиба анизотропных пластин под действием сосредоточенных нагрузок широко использовались методы теории аналитических функций, восходящие к классическим работам С. Г. Лехницкого [1]. Эти методы использовались в [2]. В настоящей работе использованы интегральные преобразования обобщенных функций для получения решения задачи изгиба полубесконечной анизотропной пластины с жестко закрепленным краем.

Рассматривается задача

$$D_{11}\frac{\partial^4 W}{\partial x^4} + 4D_{16}\frac{\partial^4 W}{\partial x^3 \partial y} + 2(D_{12} + D_{66})\frac{\partial^4 W}{\partial x^2 \partial y^2} + 4D_{26}\frac{\partial^4 W}{\partial x \partial y^3} + D_{22}\frac{\partial^4 W}{\partial y^4} = \delta(x - \xi)\delta(y), \qquad (1)$$

$$W(0, y) = 0, \qquad \frac{\partial W(0, y)}{\partial x} = 0, \qquad (2)$$

где $x \in (0;\infty)$, $m_2 = \beta_2(x - \xi)$, $\xi \in (0;\infty)$.

Здесь $m_5 = \beta_1(x + \xi)$ – дельта-функция Дирака; $D_{11}, D_{12}, D_{16}, D_{26}, D_{66}, D_{22}$ – жесткости пластины; W(x, y) – прогиб пластины в точке (x, y).

Эта краевая задача моделирует изгиб анизотропной пластинки, находящейся под действием единичной нагрузки, сосредоточенной в точке (ξ , 0).

Зная W(x, y), можно найти

$$M_{x} = -\left(D_{11}\frac{\partial^{2}W}{\partial x^{2}} + D_{12}\frac{\partial^{2}W}{\partial y^{2}} + 2D_{16}\frac{\partial^{2}W}{\partial x\partial y}\right),$$

© В. С. Левада, В. К. Хижняк, Т. И. Левицкая, 2011

$$\begin{split} M_{y} &= - \Bigg(D_{12} \frac{\partial^{2} W}{\partial x^{2}} + D_{22} \frac{\partial^{2} W}{\partial y^{2}} + 2D_{26} \frac{\partial^{2} W}{\partial x \partial y} \Bigg), \\ H_{xy} &= H_{yx} = - \Bigg(D_{16} \frac{\partial^{2} W}{\partial x^{2}} + D_{26} \frac{\partial^{2} W}{\partial y^{2}} + 2D_{66} \frac{\partial^{2} W}{\partial x \partial y} \Bigg) \\ N_{x} &= - \Bigg(D_{11} \frac{\partial^{3} W}{\partial x^{3}} + 3D_{16} \frac{\partial^{3} W}{\partial x^{2} \partial y} + (D_{12} + 2D_{66}) \times \\ &\times \frac{\partial^{3} W}{\partial x \partial y^{2}} + D_{26} \frac{\partial^{3} W}{\partial y^{3}} \Bigg), \\ N_{y} &= - \Bigg(D_{16} \frac{\partial^{3} W}{\partial x^{3}} + 3D_{26} \frac{\partial^{3} W}{\partial x \partial y^{2}} + (D_{12} + 2D_{66}) \times \\ &\times \frac{\partial^{3} W}{\partial x^{2} \partial y} + D_{22} \frac{\partial^{3} W}{\partial y^{3}} \Bigg), \end{split}$$

где M_x, M_y – изгибающие моменты; H_{xy}, H_{yx} – скручивающие моменты; N_x, N_y – перерезывающие силы.

Применим к (1), (2) преобразование Фурье по y. Обозначив $F_{y}[W(x, y)] = \overline{W}(x, \lambda)$, получаем:

$$D_{11} \frac{\partial^4 \overline{W}}{\partial x^4} + 4D_{16}(-i\lambda)\frac{\partial^3 \overline{W}}{\partial x^3} + 2(D_{12} + 2D_{66})(-i\lambda)^2 \frac{\partial^2 \overline{W}}{\partial x^2} + 4D_{26}(-i\lambda)^3 \frac{\partial \overline{W}}{\partial x} + (-i\lambda)^4 D_{22} \overline{W} = \delta(x - \xi), \quad (3)$$

$$\overline{W}(+0,\lambda) = 0, \qquad \frac{\partial \overline{W}(+0,\lambda)}{\partial x} = 0.$$
 (4)

ISSN 1607-6885 Нові матеріали і технології в металургії та машинобудуванні №2, 2011

Применяя к (3) преобразование Лапласа по x и обозначив $L[W(x)] = \overline{W(p)}$, получим

$$\overline{\overline{W}}(p) = \frac{1}{\Delta} \left(e^{-p\xi} + D_{11}B_1p + D_{11}B_2 - 4D_{16}(i\lambda)B_1 \right), (5)$$

где
$$\Delta = D_{11}p^4 + 4D_{16}(-i\lambda)p^3 + 2(D_{12} + 2D_{66}) \times (-i\lambda)^2 p^2 + 4D_{26}(-i\lambda)^3 p + (-i\lambda)^4 D_{22},$$

$$B_1 = \frac{\partial^2 W(+0,\lambda)}{\partial x^2}, \ B_2 = \frac{\partial^3 W(+0,\lambda)}{\partial x^3},$$

Уравнение

 $D_{11}\mu^4 + 4D_{16}\mu^3 + 2(D_{12} + 2D_{66})\mu^2 + 4D_{26}\mu + D_{22} = 0$ может иметь следующие варианты корней 1) $\mu_{1,2} = \alpha_1 \pm i\beta_1$, $\mu_{3,4} = \alpha_2 \pm i\beta_2$, $\beta_1 > 0$, $\beta_2 > 0$,

2) $\mu_{1,2,3,4} = \alpha \pm i\beta$, $\beta > 0$.

Применяя к (5) обратное преобразование Лапласа с учетом того, что $\lim_{x\to\infty} \overline{W}(x,\lambda) = 0$, получим:

- для первого варианта корней

$$\begin{split} \overline{W} &= \frac{1}{S|\lambda|^3} \bigg(T_1 e^{-|\lambda|\beta_1|x-\xi|} e^{i\lambda\alpha_1(\xi-x)} + \\ &+ T_4 e^{-|\lambda|\beta_2|x-\xi|} e^{i\lambda\alpha_2(\xi-x)} + \\ &+ (\bigg(e^{-|\lambda|\beta_1(x+\xi)} e^{i\lambda\alpha_1(\xi-x)}\beta_2 + \\ &+ (e^{-|\lambda|\beta_2(x+\xi)} e^{i\lambda\alpha_2(\xi-x)}\beta_1 \bigg) \cdot T_2 + \\ &+ \bigg(e^{-|\lambda|(\beta_1x+\beta_2\xi)} e^{i\lambda(\alpha_2\xi-\alpha_1x)} + \\ &+ e^{-|\lambda|(\beta_2x+\beta_1\xi)} e^{i\lambda(\alpha_1\xi-\alpha_2x)} \bigg) \cdot T_3 \bigg) / Q \bigg) - \\ &- \frac{i\lambda}{S|\lambda|^4} \bigg(\bigg(e^{-|\lambda|\beta_1|x-\xi|} e^{i\lambda\alpha_1(\xi-x)} - \\ &- e^{-|\lambda|\beta_2|x-\xi|} e^{i\lambda\alpha_2(\xi-x)} \bigg) \cdot T_5 + \\ &+ 2\beta_1\beta_2(\alpha_1-\alpha_2) \bigg(e^{-|\lambda|(\beta_1x+\beta_2\xi)} e^{i\lambda(\alpha_2\xi-\alpha_1x)} - \\ &- e^{-|\lambda|(\beta_2x+\beta_1\xi)} e^{i\lambda(\alpha_1\xi-\alpha_2x)} \bigg) \bigg), \end{split}$$

The
$$Q = (\beta_1 - \beta_2)^2 + (\alpha_1 - \alpha_2)^2$$
,
 $S = 2D_{11}\beta_1\beta_2((\beta_1 + \beta_2)^2 + (\alpha_1 - \alpha_2)^2) \cdot Q$,
 $T_1 = -\beta_1^2\beta_2 + \beta_2^3 + \beta_2(\alpha_1 - \alpha_2)^2$,
 $T_2 = -\beta_1^4 + 2\beta_1^2\beta_2^2 - 2\beta_1^2(\alpha_1 - \alpha_2)^2 - \beta_2^4 - 2\beta_2^2(\alpha_1 - \alpha_2)^2 - (\alpha_1 - \alpha_2)^4$,

$$\begin{split} T_3 &= 2\beta_1\beta_2 \left(\!\beta_1^3 - \beta_1\beta_2^2 + \beta_1 \left(\alpha_1 - \alpha_2\right)^2 - \beta_1^2\beta_2 + \\ &+ \beta_2^3 + \beta_2 \left(\alpha_1 - \alpha_2\right)^2\right)\!\!, \\ T_4 &= -\beta_1\beta_2^2 + \beta_1^3 + \beta_1 (\alpha_1 - \alpha_2)^2, \\ T_5 &= 2\beta_1\beta_2 (\alpha_1 - \alpha_2) sign(\xi - x); \\ - &\text{для второго варианта корней} \end{split}$$

$$\begin{split} \overline{W} &= \frac{1}{4D_{11}\beta^{3}|\lambda|^{3}} \Big(e^{-|\lambda|\beta |x-\xi|} e^{i\lambda\alpha (\xi-x)} \times \\ &\times \Big(1+|\lambda|\beta|x-\xi|\Big) - e^{-|\lambda|\beta (x+\xi)} e^{i\lambda\alpha (\xi-x)} \times \\ &\times \Big(1+2|\lambda|^{2}\beta^{2}x\xi-|\lambda|\beta(x+\xi)\Big) \Big). \end{split}$$

Для нахождения W(x, y) используем результаты [3].

В первом варианте решение будет иметь вид

$$\begin{split} \overline{W} &= \frac{1}{2\pi S} \Biggl(\Biggl(2m_1 n_1 arctg \frac{n_1}{m_1} + \Bigl(n_1^2 - m_1^2\Bigr) \ln r_1 \Bigr) \cdot T_1 + \\ &+ \frac{\beta_2 T_2}{Q} \Biggl(2m_5 n_1 arctg \frac{n_1}{m_5} + \Bigl(n_1^2 - m_5^2\Bigr) \ln \overline{r_1} \Biggr) + \\ &+ \frac{T_3}{Q} \Biggl(2m_3 n_3 arctg \frac{n_3}{m_3} + \Bigl(n_3^2 - m_3^2\Bigr) \ln r_3 \Biggr) + \\ &+ T_4 \Biggl(2m_2 n_2 arctg \frac{n_2}{m_2} + \Bigl(n_2^2 - m_2^2\Bigr) \ln r_2 \Biggr) + \\ &+ \frac{T_3}{Q} \Biggl(2m_4 n_4 arctg \frac{n_4}{m_4} + \Bigl(n_4^2 - m_4^2\Bigr) \ln r_4 \Biggr) + \\ &+ \frac{\beta_1 T_2}{Q} \Biggl(2m_6 n_2 arctg \frac{n_2}{m_6} + \Bigl(n_2^2 - m_6^2\Bigr) \ln \overline{r_2} \Biggr) + \\ &+ 4\beta_1 \beta_2 (\alpha_1 - \alpha_2) m_1 n_1 \ln r_1 + 2\beta_1 \beta_2 (\alpha_1 - \alpha_2) \times \\ &\times (m_1^2 - n_1^2) arctg \frac{n_1}{m_1} + 2\beta_1 \beta_2 (\alpha_1 - \alpha_2) \times \\ &\times \Biggl((n_3^2 - m_3^2) arctg \frac{n_3}{m_3} - 2m_3 n_3 \ln r_3 \Biggr) - \\ &- 4\beta_1 \beta_2 (\alpha_1 - \alpha_2) m_2 n_2 \ln r_2 + 2\beta_1 \beta_2 (\alpha_1 - \alpha_2) \times \\ &\times \Bigl(n_2^2 - m_2^2) arctg \frac{n_2}{m_2} + 2\beta_1 \beta_2 (\alpha_1 - \alpha_2) \times \\ &\times \Bigl(2m_4 n_4 \ln r_4 + (m_4^2 - n_4^2) arctg \frac{n_4}{m_4} \Biggr) \Biggr) \Biggr), \end{split}$$

 $m_4 = \beta_2 x + \beta_1 \xi$, $n_4 = y - \alpha_1 \xi + \alpha_2 x$,

$$m_5 = \beta_1(x+\xi) , m_6 = \beta_2(x+\xi) ,$$

$$r_1 = \sqrt{m_1^2 + n_1^2} , \overline{r_1} = \sqrt{m_2^2 + n_1^2} ,$$

$$r_2 = \sqrt{m_2^2 + n_2^2} , \overline{r_2} = \sqrt{m_6^2 + n_2^2} ,$$

$$r_3 = \sqrt{m_3^2 + n_3^2} , r_4 = \sqrt{m_4^2 + n_4^2} .$$

При втором варианте корней решение примет вид

$$W = \frac{1}{8\pi\beta^3 D_{11}} \left(\left(\beta^2 (x - \xi)^2 + (y + \alpha(x - \xi))^2 \right) \ln q - \left(\beta^2 (x + \xi)^2 + (y + \alpha(x - \xi))^2 - 4\beta^2 x \xi \right) \ln q + 2\beta^2 x \xi \right),$$

 $\tilde{a}\ddot{a}\ddot{a} q = \sqrt{\beta^2 (x-\xi)^2 + (y+\alpha(x-\xi))^2},$ $\bar{q} = \sqrt{\beta^2 (x+\xi)^2 + (y+\alpha(x-\xi))^2}.$

При $\beta = 1$, $\alpha = 0$, $D_{11} = D$ получается известное решение Мичелла для изотропной пластины.

Из этого решения легко получается функция Грина соответствующей краевой задачи

$$G(x, y, \xi, \eta) = W(x, y - \eta).$$

Полученное точное решение задачи об изгибе полубесконечной анизотропной пластины выражено в замкнутой форме через элементарные функции, что позволяет эффективно его использовать.

Список литературы

- 1. Лехницкий С. П. Анизотропные пластинки / С. П. Лехницкий. М. : Наука, 1977. 416 с.
- Максименко В. Н. Фундаментальные решения в задачах изгиба анизотропных пластин / В. Н. Максименко, Е. Г. Подружин // ПМТФ. – 2003. – Т. 44. – № 4. – С. 135–143.
- Левада В. С. К применению преобразования Фурье для построения фундаментального решения эллиптического дифференциального оператора / В. С. Левада. – Запорожье, 1987. – Деп. в Укр. НИИНТИ, № 706. – Ук-87.

Одержано 21.03.2011

Левада В.С., Хижняк В.К., Левицька Т.І. Згин напівнескінченої анізотропної пластини з жорстко закріпленим краєм, що знаходиться під дією зосередженого навантаження

Отримано точний розв'язок задачі згину напівнескінченої анізотропної пластини з жорстко закріпленим краєм, що знаходиться під дією зосередженого навантаження. Розв'язок виражено в замкнутій формі через елементарні функції. Побудовано функцію Гріна відповідної крайової задачі.

Ключові слова: згин, анізотропна пластина, зосереджене навантаження, жорстке закріплення, функція Гріна, крайова задача.

Levada V., Khizhnyak V., Levitskaya T. The semiinfinite anisotropic plate with fixed edge bending under the action of concentrated load

The exact solution of semi-infinite anisotropic plate with a rigidly fixed boundary bending under a concentrated load is received. Solution is expressed in closed form through elementary functions. Green's function corresponding to the boundary problem was built.

Key words: bending, anisotropic plate, concentrated load, fixed edge, the Green's function, boundary value problem.

УДК 539.3

Канд. фіз.-мат. наук М. І. Клименко, канд. техн. наук В. В. Мухін

Національний університет, м. Запоріжжя

СКІНЧЕННОЕЛЕМЕНТНА МЕТОДИКА МОДЕЛЮВАННЯ ХВИЛЬОВИХ ПРОЦЕСІВ У БАГАТОШАРОВИХ ЦИЛІНДРАХ

У статті пропонується методика дослідження процесів розповсюдження вільних пружних хвиль у нескінченних багатошарових циліндрах. Застосування такої методики дозволяє на основі єдиного алгоритму розв'язувати такі задачі для циліндрів, складених з довільної кількості шарів без обмежень на їх геометричні характеристики. Побудовані та досліджені дисперсійні залежності між частотою та фазовою швидкістю невісесиметричних вільних хвиль для п'ятишарових циліндрів.

Ключові слова: метод скінченних елементів, нескінченний багатошаровий циліндр, вільні пружні хвилі, дисперсійна залежність.

© М. І. Клименко, В. В. Мухін, 2011

ISSN 1607-6885 Нові матеріали і технології в металургії та машинобудуванні №2, 2011