УДК 621.743:669.34

Канд. техн. наук В. В. Наумик

Национальный технический университет, г. Запорожье

РАЗВИТИЕ ТЕОРЕТИЧЕСКИХ ОСНОВ РАФИНИРОВАНИЯ ПРИ ПЕРЕРАБОТКЕ ОТХОДОВ МЕДИ

Получили дальнейшее развитие теоретические основы рафинирования расплава меди в процессе вакуумного переплава и дальнейшей направленной кристаллизации. Получены данные о соотношении упругости пара различных элементов-примесей и меди при температуре ведения вакуумной плавки, их равновесном коэффициенте распределения, данные о коэффициенте диффузии примесей в жидкой меди.

Ключевые слова: медь, вторичные материалы, примеси, рафинирование, направленная кристаллизация.

Введение

Отходы меди и ее сплавов попадают на переработку, как правило, в виде стружки, обрезков проводов, отходов штамповочного производства. Они имеют развитую поверхность, сильно подвержены поверхностному окислению. Как известно, кислород является основной вредной примесью, содержащейся в отходах меди. Согласно расчетным данным, при использовании в качестве шихты обрезков проводов содержание кислорода в зависимости от диаметра провода и толщины оксидного слоя может достигать 0,5 % и более.

Эффективным раскислителем меди является углерод. Согласно данным, приведенным в работе [1], при раскислении углеродом содержание кислорода в меди может быть снижено до уровня $5.2 \cdot 10^{-7}$ %.

Однако кислород является основной, но далеко не единственной вредной примесью, содержащейся в отходах меди. На обрезках электрических проводов часто имеются остатки припоев, основными компонентами которых являются свинец и олово. В состав многокомпонентных низкотемпературных припоев также могут входить такие элементы, как сурьма, висмут, индий. Случайно в шихту для выплавки меди из вторичных материалов часто попадают обрезки алюминиевых электрических проводов и небольшие куски сплавов на основе железа. Среди отходов также могут попадаться куски хромированной меди (с гальваническим покрытием). В случае попадания в шихту частичек кремнезема SiO, в процессе последующего переплава в вакууме в графитовом тигле они могут быть восстановлены до чистого кремния.

Наличие указанных примесей даже в небольших количествах существенно ухудшает комплекс эксплуатационных свойств меди.

Рафинирование за счет испарения в вакууме

Известно, что с увеличением температуры давление пара элементов повышается. В работе [2] приведены данные об упругости паров различных элемен-

тов P в атмосферах при различных температурах. Систематизированы значения данного параметра в Па (согласно системе СИ) для основных элементов, содержание которых ограничивается ДСТУ ГОСТ 859:2003.

Аппроксимацией получили температурные зависимости упругости пара приведенных элементов, которые затем экстраполировали до температуры 1473 К, соответствующей условиям проведения плавки меди (табл. 1). Поскольку физически изменение давления пара имеет логарифмический характер, а температуры — линейный, при аппроксимации подбирали степенную зависимость логарифма давления $\lg P$ пара от температуры T.

Элементы, упругость пара которых в указанном температурном интервале превышает упругость пара меди, в условиях вакуума могут удаляться из расплава меди. Причем интенсивность такого рафинирования пропорциональна соотношению давлению пара элемента и меди при соответствующей температуре.

Приняв абсолютное значение упругости пара меди при температуре ведения плавки за 1, получим четкую картину того, какие элементы и насколько эффективно могут быть удалены из расплава меди в результате ее выдержки в вакууме при температуре 1473 К (см. табл. 1).

Таким образом, за счет вакуумной обработки расплава возможно рафинирование меди от олова, свинца, сурьмы, висмута, алюминия, цинка, марганца. Эффективность рафинирования от примесей соответствующих элементов пропорциональна соотношению их упругости пара и упругости пара меди.

Данные, полученные расчетным путем, согласно установленных температурных зависимостей, качественно и количественно соответствуют имеющимся эмпирическим данным об интенсивности испарения различных элементов при температуре 1473 К в процессе вакуумного переплава, что свидетельствует об адекватности предложенных математических моделей.

Таблица 1 – Зависимость упругости пара основных элементов от температуры и упругость при 1473 К

Элемент	Зависимость упругости пара от температуры	Упругость пара при 1473 К		
		абсолютная, Па	относительная	
Cu	$\lg P = -1,69 \cdot 10^{-5} \cdot T^2 + 0,053 \cdot T - 42,18$	0,185	1,0	
Sn	$\lg P = -7.97 \cdot 10^{-6} \cdot T^2 + 0.031 \cdot T - 28.12$	0,787	4,259	
Pb	$\lg P = 2,555 \cdot 10^{-8} \cdot T^3 - 8,98 \cdot 10^{-5} \cdot T^2 + 0,111 \cdot T - 46,38$	8698	47015	
Sb	$\lg P = 0.018 \cdot T - 14.27$	5,56·10 ¹¹	3,01·10 ¹²	
Bi	$\lg P = 0.012 \cdot T - 11.23$	1047859	5674300	
Mn	$\lg P = -1,60 \cdot 10^{-5} \cdot T^2 + 0,046 \cdot T - 32,71$	6,908	37,41	
Fe	$\lg P = 3,015 \cdot 10^{-9} \cdot T^3 - 1,99 \cdot 10^{-5} \cdot T^2 + 0,048 \cdot T - 39,51$	0,011	0,062	
Co	$\lg P = 2.18 \cdot 10^{-9} \cdot T^3 - 1.62 \cdot 10^{-5} \cdot T^2 + 0.044 \cdot T - 38.55$	0,003	0,018	
Ni	$\lg P = 1,70 \cdot 10^{-9} \cdot T^3 - 1,36 \cdot 10^{-5} \cdot T^2 + 0,0389 \cdot T - 35,59$	0,005	0,025	
Zn	$\lg P = 2,95 \cdot 10^{-8} \cdot T^3 - 8,47 \cdot 10^{-5} \cdot T^2 + 0,088 \cdot T - 29,01$	3,41·10 ¹¹	1,85·10 ¹²	
Cr	$\lg P = 7,69 \cdot 10^{-3} \cdot T - 12,79$	0,034	0,185	
Al	$\lg P = -6,275 \cdot 10^{-6} \cdot T^2 + 0,028 \cdot T - 27,23$	2,197	11,896	
Si	$\lg P = 2,85 \cdot 10^{-9} \cdot T^3 - 2,1 \cdot 10^{-5} \cdot T^2 + 0,055 \cdot T - 48,46$	1,26·10 ⁻⁴	6,82·10 ⁻⁴	

Следует отметить, что такие элементы, как олово, свинец и висмут, попадают в расплав меди с остатками припоя на электрических проводах и даже в малых количествах резко снижают электропроводность чистой меди.

Рафинирование в процессе направленной кристаллизации

Рафинирование меди от примесей олова, свинца и некоторых других легкоплавких примесей возможно за счет использования эффекта вытеснения примесных элементов в расплав в процессе направленной кристаллизации. При этом указанные примеси оттесняются в жидкую ванну и в условиях вакуума могут быть удалены из расплава за счет испарения.

Наиболее полно этот эффект проявляется при формировании плоского фронта затвердевания.

В условиях интенсивного перемешивания расплава коэффициент распределения примесей в жидком металле K близок к равновесному K_0 , который представляет собой отношение предельных растворимостей элемента в жидкой и твердой фазе в атомных долях [3].

Поэтому локальная концентрация растворенного в жидкой фазе примесного элемента вблизи фронта кристаллизации $C_{_{\scriptscriptstyle Л}}$ может быть определена при помощи следующего уравнения [4]:

$$C_{\pi} = C_0 + C_0 \cdot \left(\frac{1 - K_0}{K_0}\right) \cdot e^{\frac{-R \cdot x}{D_{\mathcal{M}}}}, \tag{1}$$

где C_0 – среднее содержание примесного элемента в расплаве;

 K_0 — равновесный коэффициент распределения; x — расстояние от фронта кристаллизации;

 $D_{_{\infty}}$ – коэффициент диффузии примеси в расплаве меди;

R — скорость кристаллизации.

Из уравнения (1) следует, что при последовательной кристаллизации меди с малой скоростью возможно снижение содержания примесных элементов, равновесный коэффициент распределения которых K_0 меньше 1.

Для определения с достаточной степенью приближения степени эффективности рафинирования расплава меди от различных элементов в процессе направленного затвердевания определили их равновесные коэффициенты распределения (в атомных и весовых долях) в твердой и жидкой меди по соответствующим двойным диаграммам состояния [5].

За максимальную растворимость примесного элемента в твердой фазе принимали значение его предельной концентрации в α- меди при температуре, соответствующей выделению первой интерметаллидной фазы в процессе кристаллизации расплава. Поскольку все рассмотренные элементы в расплаве меди растворяются неограниченно без образования каких-либо фаз, соответствующее значение максимальной растворимости принимали равным 50 % (табл. 2).

При увеличении скорости кристаллизации эффект оттеснения примесей снижается и для обеспечения возможности протекания процесса рафинирования повышаются требования к равновесному коэффициенту распределения растворенных элементов.

Элемент	Предельная растворимость элемента в твердой меди при соответствующей температуре		Равновесный коэффициент распределения K_0		Коэффициент диффузии примеси в расплаве меди $D_{\pi}\cdot 10^5$, см ² /с	
	температура, °С	вес. %	ат. %	вес. %	ат. %	$D_{\rm x} \cdot 10^{\rm 5}$, cm ² /c
Sn	798	13,5	7,7	0,27	0,154	1,53
Pb	600	< 0,29	< 0,09	< 0,0058	< 0,0018	> 35,43
Bi	980	< 0,01	< 3.10-3	< 0,0002	< 6.10-5	> 792,38
Sb	645	11,0	8,0	0,22	0,16	1,48
Si	852	5,3	11,25	0,106	0,225	1,17
Fe	1094	4,0	4,5	0,08	0,09	2,23
Co	1110	5,1	5,5	0,102	0,11	1,93
Ni	-	50,0	50,0	1,0	1,0	0,41
Mn	> 800	50,0	50,0	1,0	1,0	0,41
Mg	722	2,8	7,0	0,056	0,14	1,63
Zn	902	32,5	31,9	0,650	0,638	0,56
Cr	1075	0,65	0,8	0,013	0,016	7,56
Al	1037	7,5	16,0	0,15	0,32	0,91

Таблица 2 – Параметры, влияющие на эффективность рафинирования в процессе направленной кристаллизации

В большей степени рафинирование в процессе направленного затвердевания происходит от примесей, характеризующихся более высоким коэффициентом диффузии в расплаве основы.

Существует взаимосвязь между коэффициентом диффузии легирующих элементов в жидкой основе и их предельной растворимостью в твердой основе. В работе [6] приведены данные, показывающие, что более высокой величине растворимости элемента в твердом железе соответствует меньшее значение коэффициента диффузии этого элемента в расплаве (табл. 3).

Такая взаимосвязь вполне понятна и объяснима с точки зрения физической сущности данных двух явлений. Разница в коэффициентах растворимости в твердой и жидкой фазах основы создает своеобразный подпор градиента концентрации данного примесного элемента вблизи фронта кристаллизации. Коэффициент диффузии характеризует способность элемента к выравниванию его концентрации в объеме расплава. Чем больший подпор создается, тем, естественно, больше предпосылок для повышения скорости массопереноса элемента из пересыщенной зоны в объем расплава.

Таблица 3 — Взаимосвязь между коэффициентом диффузии элементов в расплаве и предельной растворимостью в твердом железе [6]

TT 1.1	ъ	If a a de de server assem
Диффунди-	Растворимость в	Коэффициент
рующий	твердом железе,	диффузии $D \cdot 10^5$,
элемент	ат. %	см ² /с, при 1600 °C
Co	50,0	0,4
Mn	50,0	0,3
Ni	50,0	0,4
Cr	12,0	0,9
C	8,6	3,7
Si	4,2	2,4
Mo	1,6	3,2
V	1,6	4,1
Nb	1,4	4,6
W	1,0	5,9
Zr	0,5	8,1
Ti	0,7	13,8
Ru	30,0	0,8

Если использовать приведенные данные, можно получить следующее уравнение, описывающее взаимосвязь между коэффициентом диффузии определенного элемента и его предельной растворимостью в твердой основе:

$$D_{\mathcal{H}C} = 6.457 \cdot C_n^{-0.707} \cdot 10^{-5}, \quad r = -0.95,$$
 (2)

где $D_{\!\scriptscriptstyle \mathcal{H\!C}}-$ коэффициента диффузии элемента в жидкой основе;

 C_{n} — предельная растворимость элемента в твердой основе (ат. %).

Коэффициенты диффузии основных примесных элементов в жидкой меди, рассчитанные согласно уравнению (2), приведены в табл. 2.

Таким образом, при направленной кристаллизации создаются условия для эффективного рафинирования меди от тех примесей, у которых равновесный коэффициент распределения меньше определенного значения, зависящего от скорости кристаллизации и более высокое значение коэффициента диффузии в расплаве основы.

Обобщенные и систематизированные данные (см. табл. 2) позволяют составить четкую картину эффективности рафинирования расплава меди от различных примесей в процесс направленной кристаллизации. Согласно приведенным данным, это (в порядке снижения эффективности): Ві, Рb, Сr, Fe, Со, Mg, Sn, Sb. Рафинирование от Si, Al и особенно Zn, происходит в меньшей степени и возможно только при невысоких скоростях кристаллизации.

Следует отметить, что некоторые из элементов, такие как Fe, Cr и Co, не могут быть удалены из меди за счет испарения при плавке в вакууме.

Наиболее эффективно удаляются за счет оттеснения в жидкую фазу Рb и Вi как элементы, практически не растворимые в твердой меди.

Примесь никеля не может быть удалена из расплава меди ни в процессе вакуумного переплава, ни направленной кристаллизации.

Выводы

Систематизированы и обобщены данные об упругости пара и растворимости основных примесных элементов в меди. Аппроксимацией получены зависимости упругости пара элементов от температуры. Согласно полученным зависимостям определена упругость пара основных примесей в меди при температуре ведения вакуумной плавки и установлено их соотношение с упругостью пара основы.

Получена взаимосвязь коэффициента диффузии элементов в жидкой фазе с их предельной растворимостью в твердой основе. Согласно полученной зависимости определены коэффициенты диффузии основных примесных элементов в расплаве меди.

Показано, что направленная кристаллизация расплава, полученного из отходов меди после переплава и раскисления углеродом в вакууме, позволяет очистить металл не только от кислорода, но и от примесей, обладающих в условиях вакуума упругостью пара более высокой, чем медь (Sb, Zn, Bi, Pb, Mn, Al, Sn), а также элементов, равновесный коэффициент распределения которых в твердой и жидкой фазах меньше 1,0 (Bi, Pb, Cr, Fe, Co, Mg, Sn, Sb, Si, Al, Zn). Элементы

приведены, соответственно, в порядке снижения их упругости пара и увеличения равновесных коэффициентов распределения, а следовательно — снижения степени эффективности рафинирования меди от них, которая также зависит от скорости перемещения фронта кристаллизации при направленном затвердевании.

Список литературы

- Куликов И. С. Раскисление металлов / И. С. Куликов. М.: Металлургия. – 1975. – 504 с.
- 2. Свойства элементов : справочник в 2 ч. / [под ред. чл.-корр. АН УССР Самсонова Г. В.] М. : Металлургия, 1976.-4.1.-600 с.
- 3. Пфанн В. Зонная плавка / Пфанн В. М. : Изд-во «Мир», 1970.-366~c.
- 4. Иванцов Г. П. Диффузионное переохлаждение при кристаллизации бинарного сплава / Г. П. Иванцов // Доклады АН СССР. 1951. Т. 81. № 2. С. 179—182.
- 5. Хансен М. Структуры двойных сплавов / Хансен М., Андерко К. ; [пер. с англ. Новика П.К. и др.] М. : Металлургия, 1962.-608 с.
- 6. Ершов Г. С. Строение и свойства жидких и твердых металлов / Ершов Г. С., Черняков В. А. М. : Металлургия, 1978. 248 с.

Одержано 07.02.2011

Наумик В. В. Розвиток теоретичних основ рафінування при переробці відходів міді

Отримали подальший розвиток теоретичні основи рафінування розплаву міді в процесі вакуумного переплаву та подальшої спрямованої кристалізації. Отримано дані про співвідношення пружності пари різних елементів-домішок та міді при температурі ведення вакуумної плавки, їх рівноважний коефіцієнт розподілу, дані про коефіцієнти дифузії домішок у рідкій міді.

Ключові слова: мідь, вторинні матеріали, рафінування, домішки, спрямована кристалізація.

Naumyk V. Development of theoretical basis for the purifying at copper waists processing

Theoretical bases of copper fusion purifying in the process of a vacuum remelt and further directed crystallization received further development. The data about correlation of steam resiliency of different elements-admixtures and copper at the temperature of a vacuum melting conduct, their equilibrium coefficient of distributing, about the coefficient of diffusion of admixtures in a liquid copper was received.

Key words: copper, secondary materials, admixture, refining, directed crystallization.

УДК 621.961.001

Ю. Т. Сычук, канд. физ-мат. наук Ю. И. Нагорный, д-р техн. наук В. В. Чигиринский Национальный технический университет, г. Запорожье

ВЛИЯНИЕ ПАРАМЕТРОВ ПРОЦЕССА ПРОБИВКИ РИФЛЕНЫМИ ПУАНСОНАМИ НА СИЛОВЫЕ ЗАТРАТЫ И КОЭФФИЦИЕНТЫ ГЕОМЕТРИЧЕСКОЙ ТОЧНОСТИ ДЕТАЛЕЙ

Исследовано влияние параметров процесса пробивки рифлеными пуансонами горячекатаных малоуглеродистых листовых сталей на силовой режим и качество штампованных деталей; методами множественного регрессионного анализа получены математические модели, выражающие зависимость силовых затрат и качества штампованных деталей от исследуемых параметров процесса.

Ключевые слова: пуансон, рифления, пробивка, съем, утяжка, поясок, скол.