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APPLYING THE APPARATUS OF GREEN MATRIXES AND MATRIX
ALGEBRATO THE ISSUE OF STATIC DEFORMATION OF
CIRCULARPLATES WITH DISCRETELY VARIABLE THICKNESS

The article devoted for modelling of static deformation of the circular plates with discrete-variable thickness. The
matrix of Green type and algebra of matrix had been used what allow had been constructed compact computing
algorithm for solution of consider problem. Method of calculation, which propose, had been generalised on the case

n section in the circular plate.
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The article is devoted to modelling static deformation
of circular plates with discretely variable thickness. Such
approach is not new. It was previously developed in several
works [3-5, 7, 8]. But in this paper the application of the
Green function apparatus and matrix algebra allowed to
create a compact computational algorithm of solving the
considered task in conditions of almost unrestricted
quantity of sections in compound body which was used
for modelling. The approach mentioned was fully realized
in the work [6], but for a ring-shaped plate with variable
thickness.

Materials and methods of study

Let’s have a look at a circular plate with discretely
variable thickness (fig. 1).

The calculation scheme for such model may be defined
in the following way. The axisymmetric regular bending

W= W(r) should fit the equation [1]:

AW =F, )

where F=¢q/D, q:q(r) denotes the intensity of

external regular load, D denotes cylindrical rigidity of
material, A denotes the axisymmetric Laplace operator:

_d’,1d

A=—ct——0.
dr rdr

@

Taking into account the axial symmetry, the solution
should be determined only in the line of radius of the plate
which can be viewed as a compound object that consists
ofa circular plate of the radius R, and a certain quantity of

ring-shaped plates for which the following is true:
R <r<Ry (i=12,.,n-1).

The fundamental system of solutions for
corresponding homogeneous equation may be such

function systems [1]:
1) for a circular plate (0 <r < R)):
=1, wl =, 3
2)for therings (R, <r < R,,, ) (i=12,....n—1):
=1, O =in(r), W& =2, W =2 1n(r). @)

Thus, the general solutions for equation (1) can be
written down as follows:

W(r)=C(r)+ G (),

W, = Cj(r)+ Cj+1(r)ln(r)+ CjJr2(r)r2 +

+Cjis r)r2 ln(r), ®)
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Fig. 1. Axial section of a circular plate with discretely variable thickness
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where W, (r) is a regular bending of a circular plate with
theradius R, W, (r) is aregular bending of the k-th ring-
shaped section of the plate, (k = 2,3,...,n), and the index
J increases by four unities when f increases by one,

whereas f =2 corresponds to j=3.
If we continue the solution by the method of variation
of constants, then having defined C; and having

substituted their formulas in (5) it is not difficult to get
dependences (accurate within constants of integration):

VVl(r)=El +E’2r2 +

+IF1(§)%{(§2 +r2)lné+§2 _rz}dg;
0

W, (r):a,- +a,<+1 In(r)+ E_i+2r2 +E’j+3r2 In(r)+

+ij (g)% {(gz ; rz)lné Le rz}dé’;. ©)
0

To determine the constants C_/ (j =12,....4n— 2) in

the formulas (6) one should resort to edge conditions, for
example, the conditions of rigid clamp of the edge of a
compound plate:

LA )

w,|
nlp=
r=R, dr R

n

and the conditions of joining the elements of a compound
construction [3]:

aw,|  _aw,|
dr |r:Ri dr |r:Ri

W|r:Ri = I/Vi‘*'1|r:R,- ’ ’

1

Mi|1‘:Ri =Mi+1|r:Ri; Qi|r:Ri :Qi+1|r:Rl-’ @

where i=12,...,n—1, while M; and Q, denote the

bending moment and the transverse force correspondingly
(hereinafter lower indexes denote the numbers of sections
in the compound construction), for which the following
formulas are true[1]:

El |dW. o dW,
M. —_ i i Vi i\
) 12(1—0,?){ a2 v dr }

0)=——EH_ 2Ly,
== eryar ©)

where £, denotes the thicknesses of sections, &; denotes

Poisson ratio, E; denotes Young modulus.

After substituting (6), (9) in (7), (8) wewill geta 45 —2
system of linear algebraic equations with respect to the

unknown Cj with a coefficient matrix for the unknown
_ 4n—2
A= {aij }i,jzl.

Theoretical results and their analysis
Having solved this system and substituting the

obtained formulas for C_] (j =12,..4n— 2) into (6) we

will have:

W)= [ G (re)F (e, (10)

where F; (&) = (F] (E_,) F;+1(E_>))Ta F, (‘i) =F, (‘i)’

Gl(”»é):(Gn(”,i) Glz(raé)), [1=12,..,n—1;

k=12,.,n; G, (r, EJ) —are green matrixes created for this
task.

— 4n—-2
Ifby 4= {;y }, ;=1 wewill label the matrix which is inverse

}4’7_2 that was mentioned above and

tothe matrix 4 = {a,-j R

introduce the following notations:
/ - R
th(E)=—-as %{(&2 +R12)ln€l+{52 —RJZ}—
aZ

- R
—aﬁ+1§ 2Rlln—[+——Rl +
Co4 & R

— R 2
+aji+zD,%{2(l+0,)ln€l+(c, —1)2—12+1—0,}+

+ aj,-+3D, i,
Rl

t/ﬁ(é)—a,—,—i{(gz +R,2)1n%+§2 _Rf}+

_ 2
+aj,-+1é 2Rlln&+a——R, -
4 & R

- g R, g
—aﬁ+2D1+1Z 2(1+c5,+1)1n—+(c5,+1 _1) 5+1=0p ¢~
g R;

—ai+3Dp %
)

l,{(&): —;]‘4,,,3 %{(&2 + Rr% )11’1% + gZ _ Rs} _

- 2
_aj4n—2é{2Rn lnR”+E"—R”}, (11)
' 4 & R

n
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where j =1,2,..,4n—-2; [=1,2,.,n—1, and the index j
increases by four unities when / increases by one, whereas
/=1 corresponds to j =1, then the components of the
created Green matrixes G, (r, &) will take the following form:

for k=1:

0y (&)+ 17 (),
Gn(”:@): 1}1(§)+’121(§)V2+11(r7§)=
forl=1, I(r.&)=0 for&>r;

forl+1;

Gy (r.8)=1,(&)+ 15 (&),
for #1:
th(€)+ 1 @)nlr)+ 272 €)% + 147 () In(r),

Jorl#k;

G(r,8)=114()+ 1" @)+ 1) + 7€) n(r)+ 1, (r,E),
forl=k,

L(rE)=0  for & >r;

Gpa &)=t &)+ 5" (€)in(r) + 452 (€ + 1 () In(r )

e ) 20 ),

forl#k;

G, (r.8)=11,"2(&)+1," (&) in(r)+1," (&) +1" (&) In(r)+ 1, (. E).
forl=k,
1,(nE)=0  for & >r, 12)

where [=12,.,n—1; k=23,..,n, and the index j
increases by four unities when f increases by one, whereas

k =2 corresponds to j =3,

Ik(r,&_,)=%{(§2 +r2)lné+§2 —rz}.

It is necessary to remark that in the process of solving
this task there emerge certain peculiarities in the form of
improper integrals of the function which is discontinuous
on the left endpoint of the interval of integration:

IF(@)E} lnédé_,;

0

[Fe)inlde.
0 g

With the help ofthe theory of limits it is not difficult to
show that these integrals will be convergent (in case the
function F (ﬁ,) is a constant or is of power nature).

Thereby, the function (10) with components (11), (12)
is the solution for the investigated task (1), (7), (8). The
obtained results agree with the known [2], which were got
by means of complex variable theory.
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We should note that in the process of finding the

numerical value of the inversed matrix A~ , the element of
which are necessary for the construction of corresponding
Green matrixes, one will have to solve 45 of systems each
of which consists of 45 algebraic equation with 4p
unknowns, where n denotes the quantity of sections in
the compound object.

While solving these systems by means of one of exact
methods (for example, with the help of Gaussian elimination)
we often come across calculating problems, because if n
is sufficiently great the inaccuracy in calculating of the
unknown becomes unsatisfactory. The application of
iteration method of solving the systems of algebraic
equations in the cases which are investigated is extremely
difficult because there is a necessity of preliminary
preparing the coefficient matrix with unknowns in
conditions of huge size of these matrixes.

That’s why we should pay attention to the fact that the
obtained matrixes have a so-called strip structure, i. . they
contain a big amount of null elements (quasidiagonal
matrixes). It is common knowledge that during the process
of a system of equations with quasidiagonal matrix the
number of arithmetic operations and the memory capacity
of a computer may be considerably lessened which boosts
the accuracy of calculations.

The calculating scheme for finding the inverse matrix

A7 , with the application of the approach mentioned above
can be the following.

On the basis of the well-known matrix equality
A'4=E,

-1 — l4n . . . .. .
where 4 = {a[j }i jo1 1s a matrix which is inverse with

respect to the given matrix 4= {aij }?';:

" E denotes a
unity matrix, we see that to find the unknown elements of

the inverse matrix A4~ we should solve 47 of systems of
linear algebraic equations of the following form:

51'471)14:
0 ... 0),

(@ a
=0 0 1,

1

where i denotes the number of the inverse matrix row
(i=1,2,..,4n), 1, means that the unity is the i-th
component of the vector of absolute terms.

Ifthere are three sections in a compound object (n = 3)
in the form of matrix the system mentioned above will be
the following (for each i ):

Ifthere are three sections in a compound object (n = 3)
in the form of matrix the system mentioned above will be
the following (for each i ):

Allcl +A12C2 =F1,
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A22C2 +A23C3 =F2,

APC =F. (13)
Then we can treat the system (13) for determining the

vectors of the unknown C? (i=1,2,3) in the following way.
From the first and the second equations of the system

(13) we will find, applying the rules of matrix algebra, C 2
and C? , thus:

2= (AIZTI(FI _Allcl)

3 = (ABF(FZ —A22C2l

4303 = 3

Substituting C' found in (16) into (15), we will define

C? and (C? so, in that way we will finish the solution of
the task.

In general form, if we examine a compound ring-shaped
slate which consists of n sections, we will have.

The system for defining the elements of an inverse
matrix will acquire the form similar to (13):

A11C1+A12C2 :Fl ,

A22C2 +A23C3 :F2 ,

An—ln—lcn—l +An—1ncn :Fn—l ,
A"CN=F". (17

The solution system of linear algebraic equations for

defining the unknown components of vectors C' will gain
the following form:

(_1)n+1Arm(Anfln)flAnflnfl(An72nflTl“.AZZ(AIZTIAIICI
:Fn _Ann(An—ln)—an—l +
+Ann(An—ln)—lAn—ln—l(An—Zn—lyan—Z .
+(_1)n+1Ann(Anfln)71An—ln—l(An—Zn—lyln.

A (B a2 (2] (18
The vectors C2, C3, ..., ¢" are defined through
recurrent relations:

2= (Alz)‘l(Fl _Allcl),
3= (A23T1(F2 —A22C2),

" = An—lnyl( n—l_An—ln—ICn—l). (19)

As we see, in the process of calculations we have to
deal not with coefficient matrixes with unknowns of the

size 4n x 4n , but with the matrixes of the size 4 x 4 . This

allows to avoid a great number of computational
complexities.

Calculation results

According to the scheme described above certain
calculation results were obtained (fig. 2 — 4). For
calculations we assumed the following: n=3;
E=2-10°MPa; v=0,25; i =0,01 m; h,=0,02 m;
hy;=0,03 m; R =01 m; R, =0,2 m; R;=0,3 m. The
calculation was effectuated for two variants of load
7' =(1,1,1) MPa (curve 1), g% =(1,0,0) MPa (curve 2) (in
brackets we indicated the intensity of load on the first,
second and third section accordingly).
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Fig. 2. Regular bendings
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Fig. 3. Bending moments
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Fig.4. Transverse forces
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JleBuyk C.A. 3acTtocyBaHHs anapaty MaTpuub Tuny I'pina Ta MmaTpu4Hoi ajre4pu B 3a1a4i Mpo cTaTH4He
AeopMyBaHHS KPYIVINX INIACTHH IMCKPETHO-3MIHHOI TOBIIIMHU

Cmamms npucesiuena MoOent08aHHI0 CIMAmMuYHO20 0eqhOpMYBaArHS KPYSIUX NIACMUH OUCKPEMHO-3MIHHOT MOBUUHUL.
3acmocysanus anapamy ¢yuxyiu Ipina ma mampuunoi areebpu 003601uUN0 NOOYOy8amu KOMHAKMHUU
00UUCTIIOBABHULL ANICOPUMM PO38 'A3KY PO32IAHYMOT 3a0ayi NPU NPAKMUYHO 008INbHIL KIIbKOCMI CeKYill Y CKAA0eHOMY
mini, gKe 3aCMoco8y8aNoCs NPU MOOETIOBAHHI.

Knrouoei cnoea: xpyzna niacmuna OUCKPemMHO-3MIHHOT MOBWUHU, KPAL0B8A MA CKIAOeHAd 3a0ayd, CKIA0eHa
KOHCcmpyKyis, mampuys muny I pina , mampuuna aneeopa.

JleBuyk C.A. IlpumMeHeHue anmapara MaTpun Tuna I'puHa u MaTpu4HOM anre0psl B 3a/1a4e PO CTATHYECKOe
AedopMupoBaHue KPYJIbIX IVIACTHH AMCKPETHO-TIepeMeHHOI TOJIIMHBI

Cmamus noceésawena Mooenuposanuto Cmamu4ecko2o 0eghopmMuposaHiis Kpyaiblx nidcmur OUCKpemHo-nepemMerHHou
moawunsl. Ilpumenenue annapama @yukyui I puna u mampuunol aneebpvl HO380IULO HOCMPOUMb KOMNAKMHbLI
BbIUUCTUMENBHBII ANCOPUMM PeUlenUusi paccMomperHoU 3a0a4u npu NPAKmuyecky NPoU360IbHOM KOIUYeCmeae ceKyuil
8 COCINABGHOM Meile, KOMOopoe NPUMEHSNO0CH NPU MOOETUPOBAHUU.

Knioueswie cnoea: kpyenas niacmuna OUCKpemHo-nepemenHol moawunbl, SpaHUIHO-COCMABHASA 3a0aUd, COCMABHAA
KOHCmpyKyus, mampuya muna I puna, mampuunas anceopa.
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