

1 – режим №1, 2 – режим № 2, 3 – режим № 3, 4 – режим № 4

діли густини дислокацій.

Таким чином, за умови лінійного зміцнення, густина дислокацій має типовий нормальний розподіл. На другій стадії процесу зміцнення класичні моделі зміцнення передбачають існування параболічних залежностей між напруженням та густиною дислокацій з одного боку, і між напруженням та деформацією – з іншого [1, 8].

Перелік посилань

- Ольшанецький В. Ю. Імовірностні форми розподілу густини дислокацій в сталі / В. Ю. Ольшанецький, І. Ю. Нагорна // Фізико-хімічна механіка матеріалів. 2003. № 5. С. 96–100.
- Деформационное упрочнение и развитие дислокационной структуры в поликристаллических ОЦК-металлах / [В. И. Трефилов, В. Ф. Моисеев, Е. П. Пешковский та ін.]// Известия вузов. Физика. – 1987. – № 9. – С.25–33.
- Смирнов Б. И. Дислокационная структура и упрочнение металлов / Б. И. Смирнов – Л. : Наука, 1981. – 235 с.
- Коттрелл А. Х. Дислокации и пластическое течение в кристаллах / А. Х Котрелл ; [пер.с англ]. – М. : Металлургиздат, 1958. – 264 с.
- Ландау Л. Д., Лившиц Е. М. Теория упругости / Л. Д. Ландау, Е. М. Лившиц. – М. : Наука, 1965. – 203 с.
- Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления / Г. М. Фихтенгольц. М. : Наука, 1966. – Т. 2.– 379 с.
- Герасимович А. И. Математическая статистика / А. И. Герасимович. М. : Высшая школа, 1983. 279 с.
- Ольшанецький В. Ю. Закон розподілу густини дислокацій у кристалічній структурі корозостійкої сталі / В. Ю. Ольшанецький, І. Ю. Нагорна // Вісник Черкаського державного технологічного університету. – 2002. – №3. – С. 104–106

Одержано 15.11.2010

Кисилева И.Ю., Ольшанецкий В.Е. О теоретической оценке распределения плотности дислокаций в ферритных коррозионностойких сталях на стадии линейного упрочнения

С использованием вероятностного подхода получено распределение плотности дислокаций в ферритных коррозионностойких сталях на стадии линейного упрочнения в виде гауссовского (нормального) закона. Ключевые слова: плотность дислокаций, распределение, гауссовский (нормальный) закон.

Kysilova I., Ol'shanetskiy V. Teoretical estimation of ferritic corrosionresistant steels dislocation density distributon for linear hardening

Using stochastic method the distribution of dislocation density for ferritic corrosionresistant steels for linear hardening has been obtained in Gauss (normal) form.

Key words: dislocation density, distribution, Gauss (normal) law.

УДК 539.4:620.1

Д-р техн. наук В. Ф. Терентьев¹, канд. техн. наук Е. В. Блинов¹, канд. техн. наук С. Ю. Мушникова², канд. техн. наук Д. В. Просвирнин¹, О. А. Харьков², О. В. Фомина²

¹ Институт металлургии и материаловедения им. А. А. Байкова РАН, г. Москва ² КНЦКФ ЦНИИ Конструкционных материалов «Прометей», г. Санкт-Петербург

СТАТИЧЕСКАЯ И УСТАЛОСТНАЯ ПРОЧНОСТЬ АУСТЕНИТНОЙ КОРРОЗИОННОСТОЙКОЙ СТАЛИ С ПОВЫШЕННЫМ СОДЕРЖАНИЕМ АЗОТА

Исследована статическая и усталостная прочность аустенитной высокопрочной коррозионностойкой стали с повышенным содержанием азота после различных видов обработки. Рассмотрены механизмы образования и распространения усталостной трещины.

Ключевые слова: прочность, статическое растяжение, усталость, структура, излом, трещина.

© В. Ф. Терентьев, Е. В. Блинов, С. Ю. Мушникова, Д. В. Просвирнин, О. А. Харьков, О. В. Фомина, 2011

ISSN 1607-6885 Нові матеріали і технології в металургії та машинобудуванні №1, 2011

Введение

В последние годы все более широкое применение для высоконагруженных узлов ответственных конструкций находят азотсодержащие коррозионностойкие аустенитные и дуплексные конструкционные стали [1– 13] с высокими физико-механическими свойствами. Эти стали используются в конструкциях атомных энергетических установок, в качестве пружинных релаксационностойких элементов, имплантантов и в других областях применения. Так, например, коррозионностойкая аустенитная сталь 316L, легированная азотом, успешно используется в качестве материала для некоторых компонентов атомных реакторов с жидкометаллическим охлаждением [7].

К числу важнейших механических свойств азотсодержащих аустенитных сталей, которые часто определяют несущие способности конструкций, относятся характеристики усталостной прочности [5–9]. В работе [12] показано, что характеристики малоцикловой усталости стали 316L (0,03–0,25 % N) улучшаются с возрастанием содержания азота до 0,12 %, а в интервале от 0,12 до 0,25 % долговечность остается постоянной.

В настоящей работе изучалась статическая и усталостная прочность экспериментальной высокопрочной коррозионностойкой высокоазотистой аустенитной стали 04X20H6Г11М2АФБ в различном структурном состоянии.

Материал и методика эксперимента

Химический состав экспериментальной стали марки 04Х20Н6Г11М2АФБ приведен в таблице 1.

Были изучены статические и усталостные свойства новой высокоазотистой коррозионностойкой немаг-

нитной стали 04Х20Н6Г11М2АФБ в различном структурном состоянии. Из полученных заготовок были изготовлены цилиндрические образцы в различном структурном состоянии для проведения статических и циклических испытаний, а также для изучения механизмов разрушения с использованием растровой электронной микроскопии (микроскоп VEGA\\SB).

Были проведены испытания на статическое растяжение, ударную вязкость и усталостную прочность в условиях повторного напряжения трех серий образцов, обработанных по следующим режимам: серия 1 – прокатный нагрев в интервале температур 900-110 °С и закалка в воду (структура состоит из вытянутых текстурированных зерен с повышенной плотностью дислокаций и большим количеством тонких двойников деформации) (рис. 1, *a*); серия 2 – прокатный нагрев в интервале температур (900-1100) °С и закалка в воду, закалка с 1100 °С в воду (наблюдается равноосная структура с размером зерна ~ 20 мкм и с большим количеством двойников отжига): серия 3 – прокатный нагрев в интервале температур (900-1100) °С и закалка в воду, закалка с 1100 °C в воду и нагрев до 700 °C и охлаждение на воздухе (структура такая же как у образцов серии 2, однако наблюдается мелкодисперсные выделения Cr₂N).

Механические свойства при статическом растяжении определяли на стандартных 5-кратных образцах с диаметром рабочей части 6 мм (из каждой серии испытали по два образца) на механической 10-тонной машине Инстрон 3380, а испытания на усталость проводили на сервогидравлической 10-тонной машине Инстрон 8801 в условиях повторного растяжения с минимальным напряжением цикла 20 МПа с частотой нагружения 30 Гц. Цилиндрические образцы для ис-

Таблица 1 – Химический состав стали 04Х20Н6Г11М2АФБ (вес. %).

С	N	Cr	Mn	Ni	Мо	V	Si	S	Р	Са
0,045	0,50	22,73	14,18	8,03	1,96	0,14	0,27	0,005	0,011	0,002

Рис. 1. Структура стали 04Х20Н6Г11М2АФБ, обработанной по различным режимам: а – серия 1; б – серия 2; в – серия 3 (× 500)

пытаний на повторное растяжение имели корсетную рабочую часть с радиусом закругления 50 мм и рабочим сечением диаметром 4 мм.

Механические свойства при статическом растяжении и ударная вязкость

Механические свойства исследованных серий образцов представлены на таблице 2. Видно, что максимальными прочностными свойствами (σ_{e} и $\sigma_{0,2}$) обладает 1 серия образцов (закалка с прокатного нагрева).

Максимальные значения прочностных свойств (особенно по уровню значений условного предела текучести) наблюдается у образцов серии 1. Это связано с повышенной плотностью дислокаций, когда закалка производится непосредственно с прокатного нагрева. Кроме того, в структуре в этом случае наблюдается большое количество тонких двойников дефомации. Характеристики пластичности (δ и ψ) и ударной вязкости, соотвественно несколько выше у образцов серий 2 и 3. В случае равноосной структуры (образцы серий 2 и 3) характеристики механических свойств близки между собой, хотя условный предел

текучести выше у образцов серии 3, что связано с началом распада пересыщенного твердого раствора и образованием мелкодисперсных выделений типа Cr₂N.

Циклическая прочность

Кривые усталости исследованных серий образцов представлены на рис. 2. Образцы 1 серии (кривая 1) имеют максимальный предел выносливости (680 МПа), а ограниченная долговечность в интервале максимальных циклических напряжений (700-900) МПа в несколько раз выше, чем у образцов серий 2 и 3 (кривые 2 и 3). Такое большое различие в уровне циклической прочности между образцами серии 1 и серий 2-3, по-видимому, связано повышенным уровнем условного предела текучести у образцов серии 1, при сохранении достаточно высокой пластичности и ударной вязкости. Ограниченная долговечность образцов серий 2 и 3 в интервале максимальных напряжений цикла от 550 до 900 МПа практически одинакова, а предел выносливости составляет для обеих серий ~ (530-540) МПа.

Таблица 2 – Механические свойства стали 04Х20Н6Г11М2АФБ

Маркировка	Технология получения	Механичес	Ударная вязкость				
образцов	Технология полутения	$σ_B$, ΜΠα	σ _{0,2} , МПа	δ, %	ψ, %	KCV ⁺²⁰ , Дж/см ²	
1	Состояние поставки с завода	966,0	765,4	39,2	64,8	207,3	
	(закалка с прокатного нагрева)	993,4	832,2	32,5	60,7	205,4	
2	3ПН + 1100 °С, 1 час,	940,7	590,4	46,2	69,3	241,5	
	охлаждение в воде	939,4	593,4	49,2	70,2	234,8	
	3ПН + 1100 °С, 1 час,	052.6	623,7 644,2	50,0 44,0	64,0 63,1	214.2	
3	охлаждение в воде + 700 °С,	955,6 965,3				214,5	
	1 час, охлаждение на воздухе					234,4	

Рис. 2. Кривые усталости стали 04Х20Н6Г11М2АФБ (номера кривых усталости соответствуют сериям образцов по таблице 2)

Интересно сравнить полученные результаты усталостной прочности стали 04X20H6Г11M2AФБ с ранее полученными данными в ИМЕТ им. А. А. Байкова РАН по усталостной прочности азотсодержащей стали 05X22AГ15H8M2Ф-Ш (рис. 3) [21]. Из сравнения рис. 2 и 3 видно, что образцы 1-й серии стали 04X20H6Г11M2AФБ имеют значительно более высокий предел выносливости (680 МПа), чем образцы стали 05X22AГ15H8M2Ф-Ш, предел выносливости которых лежит в интервале (490–530) МПа (рис. 3). Следует, однако, отметить, что если в настоящей работе испытания на усталость проводились в условиях повторного растяжения, то в работе [21] образцы испытывались на чистый изгиб с вращением.

Фрактография усталостного разрушения

Фрактографические картины поверхностей усталостного разрушения исследованных серий образцов из стали 04X20H6Г11М2АФБ изучались на образцах, разрушившихся при высоких значениях максимального напряжения (900 МПа) и при напряжениях, близких к пределу выносливости (при 550МПа для образцов серий 2 и 3) и при 700 МПа для образцов серии 1.

На рис. 4 представлены характерные картины поверхности разрушения образца 1-й серии, испытанного при максимальной циклическом напряжении 900 МПа и разрушившегося при $N = 2,1\cdot10^4$ циклов. На макрокартине поверхности излома можно выделить три зоны (рис. 4, *a*): зоны А и Б усталостного распространения трещины и зоны В статического долома. На рис. 4, *б* показано место зарождения усталостной трещины в зоне А с характерными усталостными бороздками. Однако в дальнейшем трещины распространяется по механизму вязкого ямочного разрушения. В области Б зарождение и распространения усталостной трещины происходит по чисто усталостному механизму разрушения, связанного с бороздчатым рельефом поверхности (рис. 4, *в*–*е*). Расстояние между бороздками составляет ~ 0,2–0,3 мкм (рис. 4, ∂). При переходе к стадии статического долома наблюдается более грубый рельеф (рис. 4, *ж*). В некоторых местах наблюдается смешанная картина разрушения: на фоне ямочного разрушения виден бороздчатый рельеф (рис. 4, *з*). Статический долом в зоне В связан с чисто вязким ямочным рельефом (рис. 4, *u*).

При максимальном циклическом напряжении 700 МПа и долговечности до разрушения $N = 5.7 \cdot 10^6$ циклов образца серии 1 наблюдаются следующие зоны поверхности усталостного разрушения (рис. 5, а): А – зона зарождения трещины, Б – зона чисто усталостного разрушения (стрелками показано направление распространения трещины), зона В – вязкого статического долома по механизму отрыва, а в зоне Г статический долом связан со сдвиговым характером разрушения. Детали этих характерных поверхностей разрушения представлены на рис. 5, б-и. На рис. 5, б. показано место зарождения усталостной трещины, а на рис. 5, в поверхность усталостного разрушения. В обоих случаях разрушение связанно с чисто усталостным бороздчатым механизмом распространения. В некоторых местах на бороздчатый рельеф разрушения накладывается сдвигообразование по одной из систем скольжения (рис. 5, e). На рис. 5, ∂ , e представлена картина зоны перехода от усталостного разрушения к статическому долому. Перед самым статическим доломом по-прежнему наблюдается чисто усталостный рельеф (рис. 5, ж), а долом в зоне В связан с довольно грубым вязким ямочным рельефом (рис. 5, 3, и).

Рис. 3. Кривые усталости гладких образцов из стали 05Х22АГ15Н8М2Ф-Ш:

1 – горячая ковка + закалка от 1100 °С в воду; 2 – горячая ковка + прокатка при 900 °С с обжатием на 40 %; гладкие; 3 – горячая ковка + закалка от 1100 °С + старение 5000 – 10 ч [21]

На рис. 6 и 7 представлены фрактографические особенности усталостного разрушения образцов серии 2 из стали 04Х20Н6Г11М2АФБ. При высоком напряжении (900 МПа), близком к пределу прочности, на макрокартине излома можно выделить три зоны (рис. 6, a): зона А связана с вязким статическим доломом, в зонах Б и В также наблюдается вязкое ямочное разрушение с той разницей, что в случае зоны Б разрушение происходит по механизму огрыва (рис. 6, d), а в зоне В по механизму сдвига (рис. 6, e). На рис. 6, e на небольшом участке в зоне Б на фоне вязкого ямочного разрушения наблюдается небольшая область с признаками усталостной бороздчатости рис. 6, e. В целом характер разрушения такой же, как и наблюдается при статическом разрушении.

При максимальном циклическом напряжении 550 МПа, близком к пределу выносливости, наблюдается классический усталостный излом с зоной зарождения усталостной трещины (зона A на рис. 7, *a*), зоной распространения усталостной трещины (зона Б) и зоной статического долома (зона В). На всей поверхности разрушения, связанной с распространением усталостной трещины, наблюдается довольно грубый вязкий рельеф с характерными усталостными бороздками (рис. 7, 6-3). Статический долом связан с типичным вязким ямочным разрушением (рис. 7, *u*).

Фрактография усталостного разрушения образцов серии 3 представлена на рис. 8 и 9. Разрушение при высоком циклическом напряжении (900 МПа), как и образца серии 2 при таком напряжении), носит характер статического вязкого разрушения (рис. 8, *a*) с зоны вязкого отрыва (зона А) и зоны сдвига (зона Б). В первом случае на поверхности излома наблюдаются классические вязкие ямки (рис. 8, δ –*г*), а во втором случае в области сдвигового разрушения наблюдаются вытянутые ямки (рис. 8, *д*, *е*).

Рис. 4. Фрактография усталостного разрушения образца серии 1 ($\sigma = 900$ МПа, $N = 2,1 \cdot 10^4$ циклов)

Рис. 5. Фрактография усталостного разрушения образца серии 1(σ = 700МПа, N = 5,7·10⁶ циклов)

Рис. 6. Фрактография усталостного разрушения образца серии 2 ($\sigma = 900$ МПа, $N = 2,1 \cdot 10^3$ циклов)

Рис. 7. Фрактография усталостного разрушения образца серии $2(\sigma = 550 \text{ MIa}, N = 4,5 \cdot 10^6 \text{ циклов})$

При максимальном циклическом напряжении, близком к пределу выносливости, макрокартина усталостного излома является типичной (рис. 9, а) с характерными основными зонами: зоной А - зарождения усталостной трещины, зоной Б – распространения усталостной трещины и зоной В – статического долома. На рис. 9, г, в более детально представлена зона зарождения усталостной трещины. Видно, что зарождение усталостной трещины происходит по определенной кристаллографической плоскости и напоминает фасетку хрупкого разрушения (рис. 9, в). При дальнейшем развитии усталостной трещины наблюдается довольно развитый рельеф с разрушением по определенным кристаллографическим плоскостям, на поверхности которых наблюдаются неявно выраженные усталостные бороздки (рис. 9, г, д). Ближе к статическому долому поверхность усталостного разрушения носит типичный бороздчатый микрорельеф (рис. 9, е-з). Статический вязкий ямочный излом наблюдается при окончательном разрушении (рис. 9, и).

Суммируя полученные результаты фрактографических исследований образцов серий 1 и 3, можно сказать, что при высоких циклических напряжениях, близких к пределу прочности, характер поверхности разрушения у всех исследованных серий материала подобен чашечному вязкому статическому излому с двумя зонами: отрыва и сдвига. Лишь в случае серии 1 наблюдается небольшая зона с характерными признаками усталостного распространения трещины. Это связано с тем, что условный предел текучести у этой серии образов выше (таблица 1), чем в случае серий 2 и 3. При циклических напряжениях, близких к пределу выносливости, на усталостных изломах можно выделить характерные зоны разрушения: зарождения усталостной трещины, распространения усталостной трещины и статического долома. Во всех случаях распространение усталостной трещины связано с типичным бороздчатым рельефом, однако в случае образцов серии 2 и 3 за счет их более высокой пластичности рельеф поверхности усталостного разрушения более вязкий, чем у образцов серии 1.

Рис. 8. Фрактография усталостного разрушения образца серии 3 ($\sigma = 900$ МПа, $N = 3 \cdot 10^3$ циклов)

Рис. 9. Фрактография усталостного разрушения образца серии 3 ($\sigma = 550$ МПа, $N = 6,2 \cdot 10^6$ циклов)

Выводы

1. Экспериментальная аустенитная азотсодержащая сталь 04Х20Н6Г11М2АФБ при исследованных режимах термомеханической обработки обладает высокими прочностными характеристиками при статическом растяжении (предел прочности находится в интервале значений от 939 до 993 МПа, а условный предел текучести от 590 до 832 МПа). Она также имеет высокие характеристики пластичности и ударной вязкости.

2. Максимальной циклической прочностью (ограниченной долговечностью в интервале напряжений (700-900) МПа и пределом выносливости – 680 МПа) обладают образцы из стали 04Х20Н6Г11М2АФБ серии 1 (закалка с прокатного нагрева) за счет большой плотности дислокаций, текстурного состояния (вытянутые вдоль прокатки зерна) и большого количества тонких двойников деформации. У образцов серий 2 и 3 в результате повторной закалки и отжига образуется равноосная структура с двойниками отжига, и в случае, если после повторной закалки производится отжиг образцы серии 3, в структуре также наблюдаются мелкодисперсные выделения типа Cr₂N. За счет значительного снижения уровня условного предела текучести у образцов серий 2 и 3 по сравнению с образцами серии 1 у этих серий предел выносливости находится в интервале (530-540) МПа, что на ~ 140 МПа ниже, чем предел выносливости у образцов серии 1. В целом образцы из стали 04Х20Н6Г11М2АФБ всех исследованных серий обладают достаточно высокой усталостной прочностью, если принять во внимание известные литературные данные по циклической прочности аустенитных азотсодержащих сталей.

3. Фрактографические исследования образцов после испытания на усталость показал, что при высоких циклических напряжениях, близких к пределу прочности, характер поверхности разрушения у всех исследованных серий материала подобен чашечному вязкому статическому излому с двумя зонами: отрыва и сдвига. Лишь в случае серии 1, которые обладают более высоким пределом текучести, наблюдается небольшая зона с характерными признаками усталостного распространения трещины. При циклических напряжениях, близких к пределу выносливости, на усталостных изломах можно выделить характерные зоны разрушения: зарождения усталостной трещины, распространения усталостной трещины и статического долома. Во всех случаях распространение усталостной трещины связано с типичным бороздчатым рельефом, однако в случае образцов серии 2 и 3 за счет их более высокой пластичности рельеф поверхности усталостного разрушения более вязкий, чем у образцов серии 1.

Перечень ссылок

- Прямое и обратное упругие последействия пружинной ленты из азотсодержащей стали Х21Г10Н7МБФ / [О. А. Банных, С. В. Грачев, Л. А. Мальцева и др.] // МиТОМ. 2006. – № 1 (607). – С. 8–11.
- Исследование структуры и механических свойств стали 08Х14АН4МДБ, полученной методом высокоградиентной направленной кристаллизации / [В. М. Блинов, О. А. Банных, М. В. Афанасьев и др.] // Деформация и разрушение материалов. 2006. № 3. С. 12–16.
- Влияние термической обработки на структуру и механические свойства особо высокопрочной коррозионностойкой мартеситно-аустенитной стали / [О. А. Банных, В. М. Блинов, А. Б. Шалькевич и др.] // Металлы. 2005. № 3. С. 51–60.
- Циклическая прочность аустенитной коррозионно стойкой стали с повышенным содержанием азота / [В. Ф. Терентьев, И. О. Банных, Е. В. Блинов и др.] // Деформация и разрушение материалов, 2009. – № 3. – С. 29–35.
- Study on low cycle fatigue property of austenitic stainless steel under stress-controlled condition / [Ding J., Zhang D., Nishida S. etc.] // Acta met. Sin. 2002. Vol. 38. – N 12. – P. 1261–1265.
- Vongt J.-B. Analysis of the Fatigue Dislocation Structures in a Duplex Stainless Steel Alloyed with Nitrogen / Vongt J.-B., Saadi B. A., Fost J. // Z. Metallkd. – 1999. – Vol. 90. – N 5. – P. 3213–328.
- Vongt J.-B. Role of the microstructure on fatigue properties of 475 °C aged duplex stainless steels / Vongt J.-B., Massol K., Fost J. // Int. J. of Fatigue. 2002. Vol. 24. – N 6. – P. 627–633.
- Massol K. Fatigue Behaviour of New Duplex Stainless Steels Upgraded by Nitrogen Alloying / Massol K., Vongt J.-B., Fost J. // ISIJ. 2002. – Vol. 42. – N 3. – P. 310–315.
- Effect of temperature on the low cycle fatigue behaviour of nitrogen alloyed type 316L stainless steel / [Srinivasan V. S., Sandhya R., Rao B. S. etc.] // Int. J. of Fatigue. 1991. – Vol. 13. – N 6. – P. 471–478.
- Fatigue and Corrosion Fatigue of High Nitrogen Austenitic Stainless Steel / Diener M., Speidel M. // HNS 2003 (High Nitrogen Steels): vdf Hochschulverlag AG an der ETH Zurich. 2003. – P. 211–215.
- Kim Y. H. Nitrogen-Alloyed, Metastable Austenitic Stainless Steel for Automotive Structural Applications / Kim Y. H., Kim K.Y., Lee Y. D. // HNS 2003 (High Nitrogen Steels): vdf Hochschulverlag AG an der ETH Zurich. 2003. – P. 149–158.
- Degallix S. Influence of nitrogen solutes and precipitates on low cycle fatigue of 316L stainless steels / Degallix S., Degallix G., Foct J. // ASTM STP 942 (American Society for Testing and Materials) 1988. – P. 798–811.
- Влияние содержания азота на усталость коррозионностойких сталей. Ч. І. Аустенитные стали / [В. Ф. Терентьев, А. Г. Колмаков, В. М. Блинов, Е. В. Блинов] // Деформация и разрушение материалов, 2007. № 2. С. 2–28.

Одержано 06.12.2010

Терентьєв В.Ф., Блінов Є.В., Мушникова С.Ю., Просвірнін Д.В., Харков О.А., Фоміна О.В. Статична та втомна міцність аустенітної корозійновитривалої сталі з підвищеним вмістом нітрогену

Досліджено статичну та втомну міцність аустенітної високоміцнысної корозійновитривалої сталі з підвищеним вмістом нітрогену після різних видів оброблення. Розглянуто механізми утворення та розповсюдження втомної тріщини.

Ключові слова: міцність, статичний розтяг, втома, структура, злам, тріщина.

Terentyev V., Blinov E., Mushnikova S., Prosvirnin D., Khar'kov O., Fomina O. Static and cyclic strength of the austenitic corrosion-resistant steel with a high nitrogen content

The static and fatigue strength of an austenitic high-strength corrosion-resistant high-nitrogen steel is studied after various types treatment. The mechanisms of fatigue crack nucleation and propagation are considered. *Key words:* strength, static tension, fatigue, structure, fracture, crack.

УДК 620.18

Д-р техн. наук В. Ю. Ольшанецький

Національний технічний університет, м. Запоріжжя

ПРО ТЕОРЕТИЧНІ ПІДХОДИ ДО ПОБУДОВИ НОВИХ ТА УТОЧНЕННЯ ІСНУЮЧИХ БІНАРНИХ ДІАГРАМ ФАЗОВОЇ РІВНОВАГИ

Пропонується розрахунковий метод побудови бінарних діаграм рівноваги із застосуванням віртуальних температур в наближенні необмежених взаємних розчинностей компонентів термодинамічних систем.

Ключові слова: діаграма стану, вільна енергія, рівноважна концентрація, віртуальна температура.

Кількість спроб побудови діаграм стану в розрахунковий спосіб, користуючись співвідношеннями рівноважної термодинаміки, є обмеженою [1].

Це пов'язано в першу чергу з відсутністю надійних алгоритмів таких розрахунків, бо збіжність отриманих результатів з експериментальними даними часто-густо є такою, що ніяк не може задовольнити дослідників, які працюють над створенням чи уточненням подібних діаграм. У той же час розробка певних підходів для розв'язання такого роду питань є дуже бажаною, оскільки дозволить на підставі обрахування надійних ліній стабільних діаграм стану, встановлених при застосуванні коректних фізичних методів визначення критичних температурних точок, провести уточнення деяких інших ліній, що були нанесені на ту чи іншу діаграму вельми наближено (хоча б через значні експериментальні труднощі).

У роботі в рамках моделі зв'язків найближчих атомів бінарних розчинів (атомів першої координаційної сфери, що оточують розчинний атом у її центрі) було здійснено спробу шляхом розв'язання рівнянь рівноваги отримати спрощені аналітичні співвідношення для ліній фігуративних точок (у системі температура-хімічний склад), що склало основу створення низок фрагментів як складових відповідних алгоритмів побудови діаграм рівноважного стану будь-яких сплавів. Ці фрагменти, на думку автора, здатні забезпечувати необхідну точність оцінок розчинності сплавів поблизу вертикалей чистих речовин з урахуванням у деяких випадках віртуальних температур плавлення компонентів системи (за умовним припущенням наявності їх схильності до необмеженої взаємної розчинності перш за все у твердому стані).

Нехай деяка бінарна система А–В має дійсно необмежену розчинність компонентів в обох агрегатних станах і складається в інтервалі кристалізації з двох фаз L (рідина) і α (тверда кристалічна фаза). Тоді на підставі відомих співвідношень для вільних енергій (за Гельмгольцем) обох фаз можна скласти в нашому випадку більш зручні вирази, а саме:

$$F_L(C,T) = E_L^A + (E_L^B - E_L^A)C + RT[C\ln C + (1-C)\ln(1-C)] - aT, \qquad (1)$$

$$F_{\alpha}(C,T) = E_{\alpha}^{A} + \left(E_{\alpha}^{B} - E_{\alpha}^{A}\right)C + RT\left[C\ln C + (1-C)\ln(1-C)\right] - bT$$
(2)

і отримати рівняння рівноваги такого виду:

1.
$$\left[\left(\frac{\partial F_L}{\partial C}\right)_T\right]_{C_L} = \left[\left(\frac{\partial F_\alpha}{\partial C}\right)_T\right]_{C_\alpha};$$
 (3)

2.
$$F_L(C_L) - \left[\left(\frac{\partial F_L}{\partial C} \right)_T \right]_{C_L} C_L =$$

= $F_\alpha(C_\alpha) - \left[\left(\frac{\partial F_\alpha}{\partial C} \right)_T \right]_{C_\alpha} C_\alpha.$ (4)

Тут $E_{\alpha(L)}^{A(B)}$ – внутрішні енергії чистих речовин; a(b)T – наближені (неконфігураційні) теплові фактори, які практично не впливають на характер концентраційних кривих вільної енергії [2].

Розв'язуючи рівняння (3) і (4), отримуємо вирази для $C_L(T)$ і $C_{\alpha}(T)$ у вигляді таких співвідношень: