Национальный технический университет, г. Запорожье

МОДЕЛИРОВАНИЕ ПРОЦЕССА НАГРЕВА ПЛОСКИХ СТЕКЛОПЛАСТИКОВ РАДИАЦИОННЫМИ МЕТОДАМИ ОБЛУЧЕНИЯ

Предложенная модель позволяет проанализировать процесс нагрева плоского стеклопластика КТ-11-ТОА с использованием энергии ускоренных электронов. Установлено, что модель облегчает выбор оптимальной температуры и ускоряет проведение экспериментов.

Ключевые слова: композиционные материалы, стеклопластик, интенсификация процесса отверждения, ускоренные электроны, инфракрасный нагрев, температурное поле, источник электронов, граничные условия.

При получении изделий из полимерных композиционных материалов конечным результатом являются стабильные физико-механические характеристики при значительной интенсификации процесса отверждения. С целью интенсификации процесса синтеза отверждение проводили ускоренными электронами и комбинированным способом, включающем предварительный инфракрасный нагрев и доотверждение ускоренными электронами. Поэтому представляет интерес изучение и прогнозирование распределения температурного поля в облучаемом изделии.

В работе исследовали процесс нагрева стеклопластиков КТ-11-ТОА+ЛБС-4.

В качестве объекта исследования рассматривали пластину размером 400×280 мм при толщине от 0,5 до 10 мм, которая перемещается на транспортере с постоянной скоростью V_{mp} (рис. 1). Вне транспортера располагается источник электронов, облучаемый пластину параллельным пучком заданной ширины *b*.

Применительно к данной задаче дифференциальное уравнение теплопроводности имеет вид:

$$c\rho \frac{\partial T}{\partial \tau} = \frac{\partial}{\partial r} \left(\lambda_r \frac{\partial T}{\partial r} \right) + \frac{\partial}{\partial \ell} \left(\lambda_\ell \frac{\partial T}{\partial \ell} \right) + q \qquad (1)$$

где ℓ – длина, м.

Упростив 1 можно записать уравнение баланса:

$$\frac{\partial T}{\partial \tau} = \frac{1}{c\rho} \left(\lambda_{\rm r} \frac{\partial^2 T}{\partial r^2} + \lambda_{\rm q} \frac{\partial^2 T}{\partial \ell^2} \right) + \frac{q}{\rho c} , \qquad (2)$$

где ф- окружная координата.

При этом граничные условия на верхней и нижней поверхностях пластины следующие:

Рис. 1. Схема процесса облучения пластины ускоренными электронами: b – ширина, м; L_1 – длина пластины, м; L_2 – толщина пластины, м; V_{mp} – скорость транспортера, м/мин

 L_1

Для решения задачи покрывали область сечения пластины регулярной сеткой: $j = 1, 2, ..., N+1; h_{z2} = r_2/N;$

 $m = 1, 2, ..., M+1; h_{\ell} = r_1/M; k = 1, 2, ...; h_t = \tau k/L,$

где *L* – число временных интервалов; *М* – число разбиений по длине пластины;

N – число разбиений по длине пластины, N – число разбиений по ширине пластины.

Конечноразностная аппроксимация уравнения 1 выглядит следующим образом:

$$\frac{T_{j,m}^{k+1} - T_{j,m}^{k}}{h_{\tau}} = \frac{1}{\rho c} \begin{pmatrix} \lambda_{r} \frac{T_{j+1,m}^{k+1} - 2T_{j,m}^{k+1} + T_{j-1}^{k+1}}{h_{z_{2}}^{2}} + \\ + \lambda_{\ell} \frac{T_{j,m+1}^{k+1} - 2T_{j,m}^{k+1} + T_{j,m-1}^{k+1}}{h_{\varphi}^{2}} \end{pmatrix} + \frac{q_{j,m}^{k}}{\rho c} . \quad (3)$$

В граничных узловых точках конечноразностные соотношения имеют вид:

на нижней кромке

$$T_{1,m}^{k+1} = \frac{T_c + T_{2,m}^{k+1} \cdot a_{1,m} + \frac{q_{j,m}^k}{\rho c}}{1 + a_{1,m}},$$
 (4)

rge
$$a_{1,m} = \frac{\lambda_r}{\alpha_{k_1} h_z}$$
. (5)

на верхней кромке

$$T_{N+1,m}^{k+1} = \frac{T_c + T_{N,m}^{k+1} \cdot a_{N+1,m} + \frac{q_{N+1,m}}{2\rho c}}{1 + a_{N+1,m}}, \quad (6)$$

rge
$$a_{N+1,m} = \frac{\lambda_r}{(\alpha_{k_2} + \alpha_{\pi})h_{z_2}}$$
 (7)

Численный расчет проводили при следующих данных: $L_1 = 0,4$ м; $L_2 = 0,28$ м; b = 0,08 м; $V_{mp} = 0,0052$ м/с; $\lambda = 0,271$ Вт/м· К; c = 1,08 кДж/кг; $\rho = 1950$ кг/м²; $\varepsilon = 0,65$; $\alpha_{k1} = 40$ Вт/м· К; $\alpha_{k2} = 22$ Вт/м· К; E = 1,5 МэВ; I = 7 мА; ерs =1· 10⁻⁵. Параметры дискретизации приняты: N = 15; M = 100; L = 600. Время отверждения составило 1 мин.

На рис. 2. показано распределение температуры в пластине при отверждении стеклопластиков ускоренными электронами.

Результаты численных расчетов подтверждают равномерность прогрева плоского стеклопластика по времени и толщине, что подтверждается плавным ходом графика. Заданная температура сохраняется в материале до толщины 2 мм. С увеличением толщины происходит плавное снижение температуры.

Рис. 2. Распределение температуры в пластине при отверждении стеклопластиков ускоренными электронами

Для реализации инфракрасного нагрева использовали галогенные лампы накаливания, которые располагали «коридором» для обеспечения равномерного температурного поля.

На рис. 3 показана схема нагрева плоской пластины излучателями инфракрасного нагрева. Пластина 33 в процессе формования нагревается с помощью специальной нагревательной системы. Эта система состоит из основных нагревательных элементов 1–7 и кожуха, служащего для предотвращения потерь тепла. Кожух состоит из верхнего 30 и боковых экранов 31, 32. Влияние кожуха на нагрев пластины можно описать посредством введения фиктивных излучателей: верхних 8–14, левых боковых 15–21 и правых боковых 22–28. Все они являются отражениями основных нагревателей 1–7. Отражениями второго порядка пренебрегаем.

Рис. 3. Схема нагрева плоской пластины излучателями инфракрасного нагрева

Введем систему координат, считая начало координат в середине пластины. Считаем, что координаты основных излучателей заданы и равны $(x_i, y_i), i = 1, 2...7$. В направлении, перпендикулярном оси *z* излучатели имеют конечную длину *L*. Тогда координаты фиктивных верхних излучателей можно вычислить по формулам:

$$\begin{cases} x_i = x_{i-7}, \\ y_i = 2y_{30} - y_{i-7}; \end{cases} i = 8,9,...14,$$
(8)

где y₂₀ – координата верхнего экрана.

Координаты фиктивных боковых левых излучателей можно вычислить по формулам:

$$\begin{cases} x_i = 2x_{31} - x_{i-14}, \\ y_i = y_{i-14}; \end{cases} \quad i = 15, 16, \dots 21, \qquad (9)$$

где x₂₁ – координата левого бокового экрана.

Координаты фиктивных боковых правых излучателей можно вычислить по формулам:

$$x_i = 2x_{32} - x_{i-21}, \qquad i = 22,23,\dots 28, \qquad (10)$$

где x₂₂- координата правого бокового экрана.

Поскольку глубина проникновения луча незначительна, допустимо предположить, что эффекты собирания луча стенками пластины и уменьшения плотности энергии луча вследствие увеличения расстояния от источника незначительны и ими можно пренебречь.

Все выше сказанное позволяет описать поведение плотности энергии нагревающего луча такими уравнениями:

$$E_{i}^{0} = \frac{E_{TH} rR}{\pi} \left[\frac{a}{R_{i}^{2} + a^{2}} + \frac{L - a}{R_{i}^{2} + (L - a)^{2}} + \frac{1}{R_{i}} \left(\operatorname{arctg} \frac{a}{R_{i}} + \operatorname{arctg} \frac{L - a}{R_{i}} \right) \right], \quad (11)$$

где E_{TH} – плотность излучения нити накала, BT/M²; r – радиус излучающей нити, м; L – длина нити накала, м; R – коэффициент отражения рефлектора, принимаемый равным единице для основных излучателей; R_i – расстояние от *i*-го излучателя до рассматриваемой площадки, м; a – расстояние от нормали к рассматриваемой площадки до начала излучателя вдоль оси z, м.

Величину *R_i* на поверхности пластины для *i*-го излучателя можно определить по формуле:

$$R_i = \sqrt{(x_i - x_B)^2 + (y_i - y_B)^2} , \qquad (12)$$

где (*x_B*, *y_B*) – координаты точки входа луча в пластину.

При входе в тело направление луча меняется и его интенсивность уменьшается за счет косого падения. Это можно описать путем умножения исходной плотности на косинус угла между нормалью к поверхности тела и направлением луча. Формула для скалярного произведения позволяет получить в случае пластины следующее выражение:

$$E_i^1 = E_i^0 \frac{(y_B - y_i)}{\sqrt{(x_B - x_i)^2 + (y_B - y_i)^2}}.$$
 (13)

После входа в материал тела путь лучей от всех источников нагрева одинаков, поэтому можно найти суммарную плотность энергии для всех источников:

$$E^{1} = \sum_{i=1}^{28} E_{i}^{1} . \tag{14}$$

Дальше плотность энергии излучения уменьшается вследствие потерь на нагрев материала:

$$E^{j+1} = E^j \exp(-sp_j), j=1,2,$$
 (15)

где E^{j} – плотность излучения на глубине *s* пластины (*j* = 2), Bт/м²;

 p_j – коэффициенты затухания излучения в материале пластины (j = 1).

Определим плотность рассеянного тепла на глубине s. Для этого возьмем элементарный объем, верхняя грань которого располагается на глубине s пластины, нижняя грань – на глубине $s + \Delta s$ рассматриваемого тела, а боковые грани нормальны к поверхности. Через верхнюю грань в рассматриваемый объем поступает энергия, а через нижнюю она уходит. Потоков энергии через боковые грани нет. Составим уравнение баланса энергии для рассматриваемого объема:

$$Q^{j} = E^{j} \exp(-sp_{j}) - E^{j} \exp(-(s + \Delta s)p_{j}) =$$

= $E^{j} \exp(-sp_{j}) (1 - \exp(-\Delta sp_{j})),$ (16)

где ј принимает значения 1 для пластины.

Плотность рассеянной энергии, то есть количество энергии в единице объема, найдем, разделив плотность Q^{i} энергии в луче на длину Δs . Устремляя Δs к нулю, получим:

$$q^{j} = \lim_{\Delta s \to 0} \frac{Q^{j}}{\Delta s} =$$

$$= \lim_{\Delta s \to 0} \frac{E^{j} \exp(-sp_{j})(1 - \exp(-\Delta sp_{j}))}{\Delta s} =$$

$$= -E^{j}p_{j} \exp(-sp_{j}).$$
(17)

Эту величину подставим в уравнение теплопроводности:

$$\rho c \frac{\partial t}{\partial \tau} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial t}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda \frac{\partial t}{\partial y} \right) + q^j .$$
(18)

На рис. 4 приведено распределение температуры при отверждении плоского стеклопластика комбинированным способом. Численный расчет проводили для тех же толщин, что и при отверждении ускоренными электронами. Время отверждения – 16 мин.

Рис. 4. Распределение температуры в стеклопластиковой пластине при отверждении комбинированным нагревом

Исследования показали, что при отверждении плоского стеклопластика комбинированным способом наблюдается равномерный прогрев по толщине. С увеличением толщины происходит незначительное плавное снижение температуры.

Таким образом, предлагаемая модель позволяет проанализировать распределение температуры в пластине из стеклопластика облучаемой ускоренными электронами и комбинированным способом. Модель способствует назначению оптимальных параметров отверждения, обеспечивающих стабильные физико-механические характеристики материала при значительном сокращении времени отверждения.

Список литературы

- Беляев Н.М. Математические методы теплопроводности / Беляев Н.М., Рядно А.А. – Высш. шк., 1993. – 415 с.
- Композиционные материалы. Справочник / Под. ред. Д. М. Карпиноса. – К. : Наукова думка, 1985. – 592 с.
- Зарубин В. С. Инженерные методы решения задач теплопроводности / Зарубин В. С. – М. : Энергоатомиздат, 1983. – 328 с.
- Исаченко В. П. Теплопередача / Исаченко В. П. Осипова В. А., Сикомел А. С. М. : Энергия, 1981. 488 с.

Одержано 12.05.2016

Задоя Н.О. Моделювання процесу нагрівання плоских склопластиків радіаційними методами опромінення

Запропонована модель дозволяє проаналізувати процес нагрівання плоского склопластику КТ-11-ТОА з використанням енергії прискорених електронів. Установлено, що модель полегшує вибір оптимальної температури і прискорює проведення експериментів.

Ключові слова: композиційні матеріали, склопластик, інтенсифікація процесу затвердіння, прискорені електрони, інфрачервоне нагрівання, температурне поле, джерело електронів, граничні умови.

Zadoya N. Modeling of heat flat fiberglass radiation techniques exposure

The proposed model allows us to analyze the process of heating the flat glass fiber-CT-11 TOA using accelerated electrons energy. It was found that the model facilitates the selection of the optimal temperature and accelerates the experiments.

Key words: composite materials, fiberglass, intensification of the curing process, the accelerated electrons, infrared heating, temperature field, the electron source, the boundary conditions.