УДК 669.017:539.211

Ю. И. Кононенко, д-р техн. наук В. Е. Ольшанецкий Национальный технический университет, г. Запорожье

О КИНЕТИКЕ ФОРМИРОВАНИЯ ПЛАСТИНЧАТЫХ ФЕРРИТО-ЦЕМЕНТИТНЫХ СТРУКТУР ПРИ РАСПАДЕ ПЕРЕОХЛАЖДЕННОГО АУСТЕНИТА

Рассмотрены особенности формирования пластинчатых феррито-цементитных смесей при распаде переохлажденного аустенита с учетом 1) практически полного отсутствия частиц выделений; 2) при наличии подвижных дисперсных частиц первичных избыточных фаз; 3) при наличии неподвижных микрочастиц избыточных фаз.

Ключевые слова: перлит, аустенит, феррит, цементит, избыточные частицы, сталь, эвтектоидное превращение, скорость роста перлитной колонии, фронт роста, подвижные и неподвижные включения, стационарный и нестационарный процесс роста.

1. Модели роста перлита без учета наличия частиц примесных фаз

Основное превращение, протекающее в углеродистых сталях при охлаждении со скоростью ниже критической, - это эвтектоидный распад аустенита на смесь феррита с цементитом. Известно, что движущей силой любого превращения является разность свободных энергий исходных и образующихся фаз. При температуре 727 °С аустенит находится в термодинамически устойчивом равновесии со смесью указанных фаз. При переохлаждении аустенита эвтектоидной стали с исходной концентрацией углерода 0,8 % несколько ниже линии PSK диаграммы Fe-Fe₂C происходит кооперативное формирование двухфазной колонии (феррито-цементитной смеси), т.е. перлита, который в зависимости от температуры образования имеет различную дисперсность. При этом новые образующиеся фазы имеют состав, отличающийся от состава исходного аустенита (феррит при 727 °С содержит 0,02 %С, а с понижением температуры растворимость углерода в нем несколько снижается, химический же состав цементита остается практически неизменным (6,67 %С)). Кроме того, при эвтектоидном распаде аустенита диффузионное перераспределение атомов углерода должно сочетаться с переходом атомов железа из одной полиморфной модификации (аустенит) в другую (феррит), а также с образованием химического соединения (цементит). Первый процесс связан с некоторым перемещением соответствующих атомов на расстояния больше межатомных, второй же сводится к перестройке решетки растворителя (т.е. железа) на границе раздела фаз аустенит/феррит и формированию новых химических связей между железом и углеродом [1]. Рост перлитной колонии контролируется диффузионным перераспределением углерода вдоль фронта превращения как в приграничном в объеме аустенита, так и непосредственно на границе раздела аустенита с образующейся фазовой смесью.

Известно, что скорость роста перлитной колонии и ее межпластинчатое расстояние (т.е. суммарная толщина пластинок феррита и цементита или расстояние между серединами ближайших одноименных пластин) постоянны при данной степени переохлаждения аустенита. В некоторых работах, например [1, 2], была осуществлена попытка рассчитать скорость роста перлита при разных степенях переохлаждения эвтектоидной стали. При этом экспериментальные значения скорости роста перлитной колонии взяты из имеющихся публикаций (например, [3]).

Согласно представлениям Б. Я. Любова [1], скорость роста перлитной колонии можно оценить по формуле:

$$v \approx \frac{4\pi D}{S} \left(\frac{c_0^{\gamma \alpha} - c_0^{\gamma cem}}{c_{cem} - c_{\alpha}} \right), \tag{1}$$

где D – коэффициент диффузии, равный $D = a \left(1 + c_0^{\gamma \alpha} + c_0^{\gamma cem} \right) \exp \left(- \frac{Q_a}{RT} \right);$ здесь множитель a

равен 0,04; $c_0^{\gamma\alpha}$ и $c_0^{\gamma cem}$ – соответственно равновесные концентрации углерода в аустените у поверхности раздела фаз аустенит/феррит и аустенит/цементит:

$$c_0^{\gamma\alpha} = 0.8 + 0.013(1000 - T), c_0^{\gamma cem} = 0.8 - 0.002(1000 - T);$$

 $Q_a = 31350$ кал – энергия активации перераспределения углерода в аустените перед фронтом роста перлитной колонии; R – универсальная газовая постоянная; T – кельвиновская температура изотермического распада аустенита на феррито-цементитную смесь; c_{cem} та c_{α} – соответственно содержание углерода в цементите (6,67 %) и феррите (0,02 %) при 727 °C;

© Ю. И. Кононенко, В. Е. Ольшанецкий, 2010

S – период повторяемости структурного фрагмента в перлите, который, согласно Зинеру [4], рассчитывает-

ся как
$$S \approx \frac{18}{1000 - T} \cdot 10^{-4}$$
 см.

Расчеты Хиллерта [2] основаны на уточненном в сравнении с представлениями Зинера подходе к оценке распределения атомов углерода вдоль фронта продольного роста перлитной колонии. Им была предложена следующая формула для расчета скорости роста перлита:

$$v \approx \frac{D}{a} \cdot \frac{S^2}{S^{\alpha} S^{cem}} \cdot \frac{c_0^{\gamma \alpha} - c_0^{\gamma cem}}{c_{cem} - c_{\alpha}} \cdot \frac{1}{S} \left(1 - \frac{S_c}{S} \right), \quad (2)$$

где параметры D, $c_0^{\gamma \alpha}$, $c_0^{\gamma cem}$, c_{cem} , c_{α} и S имеют тот же физический смысл, что и в работе [1], и рассчитываются примерно по таким же формулам; a – коэффициент, равный 0,72; S_c – некоторая функция, зависящая от параметров границы (величин углов сопряжения и значений поверхностной энергии). При максимальной скорости роста при каждой температуре пре-

вращения $S_c = \frac{1}{2}S$; S^{δ} и S^{cem} – толщины пластинок

феррита и цементита в перлите (при этом, $S^{\alpha} = \frac{7}{8}S$,

$$S^{cem} = \frac{1}{8}S$$
).

Поскольку скорости роста перлитной колонии при разных переохлаждениях, полученные расчетным путем по формулам Любова [1] и Зинера (с уточнением Хиллерта) [2], дают значительное расхождение с экспериментальными значениями (таблица 1), нами был разработан иной подход для расчета скорости роста перлитной колонии, основаны на теоретической работе [5]. Соответствующая расчетная формула имела вид:

$$v = \frac{1}{3}m\left(P - \frac{2\gamma_{\Phi \mathcal{U}}}{L}\right),\tag{3}$$

где *m* – микроскопическая подвижность фронта роста перлитной колонии, оцененная нами, следуя Тарнбаллу

[6], как
$$m = 3 \frac{aV}{R} \cdot \frac{k}{h} \exp\left(-\frac{\Delta F_a}{RT}\right)$$
. Тут a – параметр ре-

шетки α -Fe, взятый как 3·10⁻⁸см, V – атомный объем моля железа, равный 7,19см³, k – постоянная Больц-

мана, h – постоянная Планка, ΔF_a – энергия активации, оцененная с учетом влияния углерода и особенностей строения межфазных границ (принималась как 24500 кал); P – движущая сила процесса, связанная с перекристаллизацией аустенита в фазовую смесь и меняющаяся с температурой, [7]; $\gamma_{\Phi II}$ – удельная свободная энергия межфазной границы раздела феррит/цементит, которая с учетом определенной кристаллогеометрической связи этих фаз составляет приблизительно 2,38·10⁻⁷ кал/см² [8], а L – межпластинчатое расстояние в перлите, которое по смыслу явля-

ется в два раза меньшим, чем величина $S(L = \frac{1}{2}S)$.

В таблице 1 приведены значения движущей силы процесса *P* [7], а также данные по оценке скорости роста перлита, полученные экспериментальным путем [3], и по формулам Любова (1), Зинера (с уточнением Хиллерта) (2), и предложенной авторами данной работы (3). Соответствующие графики зависимости скоростей роста перлитной колонии от температуры переохлаждения приведены на рисунке 1.

Анализ полученных результатов позволяет сделать вывод о том, что предложенная нами методика расчета скорости роста перлитной колонии по формуле (3), учитывающая особенности морфологии фронта роста колониальной структуры и особенно постоянство движущей силы во всех фигуративных точках указанного фронта, позволяет максимально приблизиться к экспериментальным оценкам этого кинетического параметра.

Некоторое смещение максимумов сравниваемых зависимостей легко объяснить тем, что в экспериментальной стали помимо 0,8 % углерода содержится еще 0,21 % марганца.

Кроме этого, нами была сделана попытка оценить расчетным способом скорость продольного роста перлита с учетом наличия подвижных и неподвижных частиц первичных неметаллических включений, которые присутствуют в любой углеродистой стали, например в эвтектоидной стали У8.

Таблица 1 – Скорости роста перлитной колонии, полученные экспериментальным или расчетным путем при разных переохлаждениях и переменной движущей силы

Температура превращения, °С	Движущая сила, <i>P</i> , кал/см ³	Скорость роста перлитной колонии v _{роста} ×10 ⁴ , см/с			
		Экспери-	по расчету		
		ментальная	(Любов)	(Зинер и Хиллерт)	(методика авторов)
700 (973K)	0,0695	0,30	0,65	0,61	3,89
650 (923K)	0,236	2,25	3,20	2,47	6,92
600 (873K)	0,43115	6,15	4,00	2,92	6,00
550 (823 K)	0,626	7,50	2,45	2,16	3,72
450 (723 K)	1,0153	0,50	0,70	0,46	0,76
400 (673 K)	1,21	0,30	0,15	0,14	0,25

Рис. 1. Экспериментальные и расчетные скорости роста перлита в эвтектоидной стали

2 Случай наличия в аустените подвижных дисперсных частиц избыточных фаз

Одним из авторов настоящей работы была создана теоретическая модель [5] из двух типов зерен, которые образовались в результате описанного ранее твердого двухфазного превращения матричной фазы. Кооперативный рост кристаллов такой двухфазной колонии представлял собой последовательную реализацию двух режимов: нестационарного (т.е. стадия искривления начальных круговых сегментов фаз фронта роста) и стационарного (когда весь составной фронт двухфазной колонии движется как одно целое).

Интересно рассмотреть в соответствии с этой моделью эвтектоидный распад аустенита на феррито-цементитную смесь ($A \rightarrow \Phi + \mu$) в присутствии подвижных частиц (т.е. таких, которые захватываются фронтом роста и движутся вместе с ним) первичных выделений в стали (оксидов, сульфидов и др.).

Необходимо отметить, что удельная свободная энергия границы раздела феррит/цементит является очень низкой (10 эрг/см²) по сравнению с энергиями границ раздела феррит/аустенит (550 эрг/см²) и цементит/аустенит (25 эрг/см²) [8]. Указанная значительная разница между энергиями $\gamma_{\phi ll}$ и $\gamma_{\phi A}$ объясняется скорее всего более лучшим кристаллографическим спряжением решеток на границе феррит–цементит (пластины феррита и цементита сопрягаются гранями (101)_ц и {112}_{ϕ} или (001)_{$ll} и {125}_{<math>\phi$}; соответствующие кристаллографические плоскости в решетках феррита и цементита и цементита и цементита и дементита и цементита и цементита и цементита и цементита и дементита первичной фазы должны располагаться преимущественно на границах раздела цементит/аустенит и феррит/аустенит.</sub>

На рисунке 2 показана схема формирования феррито-цементитных колоний при наличии первичных выделений (подвижные частицы).

Согласно [5], основными параметрами модели двух смежных пластинчатых зерен являются $h_{\phi(ll)}$ и $r_{\phi(ll)}$ – максимальная высота и радиус любого сегмента ферритной (цементитной) фазы фронта границы, $L_{\phi(ll)}$ – ширина зерна феррита (цементита), $\gamma_{\phi\lambda}$, $\gamma_{ll\lambda}$, γ_{\phill} , γ_{dl} – удельные свободные энергии межфазных границ раздела феррит/аустенит, цементит/аустенит и феррит/цемен-

тит соответственно, θ – двугранный угол тройного стыка двух зерен колонии (феррита и цементита) с матричным зерном аустенитной фазы.

Согласно [9], скорость продольного роста колонии в присутствии подвижных частиц вторичной фазы определяется уравнением

$$v \cong \frac{D\omega}{kT} \cdot \frac{P_{\Sigma}}{\rho^3 n_{\Sigma}}, \qquad (4)$$

где D – коэффициент объемной самодиффузии; ω – атомный объем; k – постоянная Больцмана; T – температура по Кельвину; P_{Σ} – сумма движущих и противодвижущих сил процесса миграции ($P_{\Sigma} = P - \frac{2\gamma_{\phi A}(\mu_A)}{r_{\phi}(\mu)}$); c – радиус сферического выде-

ления первичной фазы; n_S – поверхностная плотность таких выделений, при этом имеет место зависимость $n_S = n_V r_{\Phi(II)}$ (n_V – объемная плотность выделений).

Движущей силой эвтектоидного превращения является уменьшение удельной свободной энергии при перемещении границ раздела Φ/A та L/A с учетом лап-

Рис. 2. Схема формирования феррито-цементитных колоний при наличии первичных выделений

ласовых сил сопротивления P_{γ} , которые в общем виде равны $(2\gamma_{\phi_{A(UA)}})/r_{\phi(U)}$. После некоторых допущений для упрощения рассматриваемой ситуации (поскольку процесс перемещения составного граничного фронта необходимо рассматривать как одно целое), а именно

$$P_{\gamma}^{\phi} = P_{\gamma}^{\mu} = P_{\gamma}^{\gamma}, r_{\phi}(\mu) = \frac{r_{\phi} + r_{\mu}}{2}$$
 (здесь $r_{\phi} = L \frac{\gamma_{\phi A}}{\gamma_{\phi \mu}}$, а
 $r_{\mu} = L \frac{\gamma_{\mu A}}{\gamma_{\phi \mu}}$) и $L = \frac{1}{2} (L_{\phi} + L_{\mu})$, (тут L имеет тот же

физический смысл, что и *L* в (3), и рассчитывается по такой же формуле), получаем следующее выражение для скорости роста феррито-цементитной колонии зерен:

$$v = \frac{dh_{\phi(\mathcal{U})}}{d\tau} = \frac{\eta D\omega}{kT} \cdot \frac{P - \frac{2\gamma_{\phi_A(\mathcal{U}A)}}{r_{\phi(\mathcal{U})}}}{\varepsilon_1 \cdot \mathbf{r}_{\phi(\mathcal{U})}},$$
(5)

где η – коэффициент пропорциональности, который приблизительно равен 10, ε_1 – фактор подвижных дисперсных включений на границах раздела Φ/A и Ц/А, $\varepsilon_1 = 10\rho^3 n_V$ (при этом в общем случае $0 \le \varepsilon_1 \le 1$).

Учитывая, что
$$h \cong \frac{L^2}{8r_{\phi(\mu)}}$$
 (результат разложения

действительной зависимости $h_{\phi(ll)}$ в сокращенный биномиальный ряд), а также то, что начальные значения радиусов кривизны пластинок феррита (цементита)

 $r_{0\phi(\mu)} = L \frac{\gamma_{\phi A}(\mu A)}{\gamma_{\phi \mu}}$, получаем решения уравнения (5) в

виде:

$$h_{\Phi(\mathcal{U})} = \frac{L^2}{8} \cdot \frac{a}{1 + \left(aL\frac{\gamma_{\Phi A}(\mathcal{U}A)}{\gamma_{\Phi \mathcal{U}}} - 1\right) \exp\left(-\frac{16\eta\gamma_{\Phi A}(\mathcal{U}A)aA^*}{L^2\varepsilon_1}\tau\right)}, (6)$$

где
$$a = \frac{F}{2\gamma_{\phi A(IIA)}}$$
, $A^* = \frac{D\omega}{kT}$.

Выражение (6) после его дифференцирования приводит к зависимости скорости нестационарного процесса роста v_{μ} от времени (т.е. скорости увеличения высоты граничных сегментов $h_{\phi(ll)}$ при их неподвижных концах (тройных стыков смежных зерен)):

$$v_{H} = \frac{20}{\varepsilon_{1}} \cdot \frac{a^{2} \left(aL \frac{\gamma_{\phi \mathcal{U}}(\mathcal{U}A) - 1}{\gamma_{\phi \mathcal{U}}}\right) \gamma_{\phi \mathcal{A}}(\mathcal{U}A)} \cdot A^{*} \exp\left(-\frac{16\eta \gamma_{\phi \mathcal{A}}(\mathcal{U}A) aA^{*}}{L^{2} \varepsilon_{1}}\tau\right)}{\left[1 + \left(aL \frac{\gamma_{\phi \mathcal{A}}(\mathcal{U}A)}{\gamma_{\phi \mathcal{U}}} - 1\right) \exp\left(-\frac{16\eta \gamma_{\phi \mathcal{A}}(\mathcal{U}A) aA^{*}}{L^{2} \varepsilon_{1}}\tau\right)\right]^{2}},(7)$$

Увеличение искривлений граничных сегментов приводит к росту движущей силы, которая действует

на тройные стыки: $P_{cm} = \left(\frac{L}{r_{\phi(\mathcal{U})}} \gamma_{\phi A(\mathcal{U}A)} - \gamma_{\phi \mathcal{U}}\right) \cdot \frac{1}{L}$ и которая в некоторый момент времени станет равной

силе P_{Σ} ($P_{\Sigma} = P_{cm}$), действующей на круговые сегменты фронта роста. Этот баланс движущих сил соответствует

$$P - \frac{2\gamma_{\phi A}(\iota_{A})}{r_{\phi}(\iota_{I})} = \left(\frac{L}{r_{\phi}(\iota_{I})}\gamma_{\phi A}(\iota_{A}) - \gamma_{\phi}\iota_{I}\right)\frac{1}{L}.$$
 (8)

Из этого соотношения легко получаем выражение для порогового радиуса r_{II} пластинок феррита (цементита), а с помощью (6) и (9) и уравнение для порогового времени τ_{II} , которое определяет момент включения в процесс миграции межзеренных стыков (начало стационарного процесса)

$$r_{\Pi_{\Phi(\mathcal{U})}} = \frac{3\gamma_{\Phi A(\mathcal{U}A)}}{P + \frac{\gamma_{\Phi \mathcal{U}}}{L}},$$
(9)

$$\tau_{II} = \frac{L^{2} \varepsilon_{1}}{16 \eta \gamma_{\phi A}(\mu A)} a A^{*} \ln \frac{\left(2 a \gamma_{\phi A}(\mu A) L + \gamma_{\phi \mu I} \left(a L \frac{\gamma_{\phi A}(\mu A)}{\gamma_{\phi \mu I}} - 1\right)\right)}{a L \gamma_{\phi A}(\mu A) - \gamma_{\phi \mu I}}.$$
(10)

Далее подстановкой (9) в (5) можно получить выражение, которое определяет скорость роста колонии при стационарном перемещении всего составного (многосегментного) фронта роста как единого целого

$$v_{CT} = 20 \frac{A^*}{\varepsilon_1 L^2 \gamma_{\phi A(\mathcal{U}A)}} \left(2aL \gamma_{\phi A(\mathcal{U}A)} + \gamma_{\phi \mathcal{U}} \right) \left(aL \gamma_{\phi A(\phi \mathcal{U})} - \gamma_{\phi \mathcal{U}} \right). (11)$$

В таблице 2 представлены значения скоростей роста перлитной колонии (рассчитанные по формуле (11)) при наличии подвижных частиц на границах раздела Φ/A и U/A, в зависимости от степени переохлаждения и величины фактора e_1 , а соответствующие графики зависимости скоростей роста перлитной колонии – на рисунке 3. При расчетах принимали, что

$$D = 5.8 \exp\left(-\frac{37100}{RT}\right)$$
 (с учетом информации, содер-

жащейся в [10], $\omega = \frac{4}{3}\pi r_0^3$, где r – радиус атома желе-

$$\gamma_{\phi_A(\mathcal{U}_A)} = \frac{\gamma_{\phi_A} + \gamma_{\mathcal{U}_A}}{2}$$

Анализ данных, представленных в таблице 2, а также графических зависимостей, показанных на рисунке 3, позволяет сделать вывод о том, что подвижные включения избыточной фазы могут эффективно тормозить процесс продольного роста перлитной колонии.

3 Случай наличия в аустените неподвижных дисперсных частиц избыточных фаз

Рассмотрим теперь модель эвтектоидного распада

аустенита на феррито-цементитную смесь $(A \rightarrow \Phi + \mu)$ в присутствии неподвижных частиц (т.е. таких, которые не могут двигаться вместе с фронтом роста) первичных выделений. Как и при наличии подвижных включений избыточной фазы, в данном случае рассматривается аналогичная модель, разработанная на основе [5], в которой рост кристаллов колонии (т.е пластинок феррита и цементита) представляет собой двухстадийный режим: нестационарный и стационарный.

Как и рассматривалось выше, основными параметрами модели роста перлитной колонии являются $h_{\sigma(ll)}$ и $r_{\phi(ll)}, L_{\phi(ll)}, \gamma_{\phi a}, \gamma_{lla}, \gamma_{\phi ll}$ и u, имеющие прежний физический смысл.

Согласно авторам [6], скорость продольного роста колонии на стадии нестационарного режима определяется выражением

$$v = \frac{dh_{\Phi(U)}}{d\tau} = m \cdot P_{\Sigma} , \qquad (12)$$

где *т* имеет тот же физический смысл микроскопической подвижности фронта реакции (как и в (3)) и рассчитывалась с помощью той же формулы; *P*_y, как и ранее, – сумма движущих и противодвижущих сил

процесса миграции (
$$P_{\Sigma} = P - \frac{2\gamma_{\phi_A(\mathcal{U}A)}}{r_{\phi(\mathcal{U})}} (1 - \varepsilon_1)$$
, где

$$\frac{2\gamma_{\phi A}(\mu A)}{r_{\phi(\mu)}} \varepsilon_1$$
 – дополнительная движущая сила роста,

Таблица 2 – Скорости роста перлитной колонии при наличии подвижных частиц ε_1 на границах раздела Φ/A и U/A, полученные расчетным путем при различных переохлаждениях

Температура превращения,	Расчетная скорость роста перлитной колонии $v_{pocta} \times 10^4$, см/с				
°C	$\epsilon_1 = 0,0025$	$\epsilon_1 = 0,01$	$\epsilon_1 = 0.03$		
700 (973К)	1,77	0,443	0,148		
650 (923K)	7,8	1,93	0,651		
600 (873K)	8,76	2,19	0,73		
550 (823 K)	5,37	1,34	0,45		
450 (723 K)	0,7	0,175	0,058		
400 (673 K)	0,157	0,039	0,013		

Рис. 3. Скорости роста перлитной колонии при наличии подвижных частиц на границах раздела Φ/A и Ц/A в зависимости от степени переохлаждения и величины фактора ε₁

обусловленная термодинамически выгодным увеличением числа частиц на цилиндрической сегментной полоске фронта при уменьшении радиуса кривизны. Здесь ε_1 – фактор неподвижных дисперсных включений на границах раздела Φ/A и U/A, $\varepsilon_1 = n_S \pi \rho^2$, n_S – поверхностная плотность избыточных сферических частиц фазы выделения; ρ – радиус отдельной частицы. Эта безразмерная величина определяет среднюю долю приращенной площади полоски граничного сегмента, которая замещена сечениями сфероидов выделений).

Зависимость для высоты сегмента цементитной (ферритной) фазы $h_{\phi(U)}$ определяется аналогично случаю формирования пластинчатой смеси при однофазной кристаллизации [11]

$$h_{\phi(\mathcal{U})} = \frac{L^2}{8(1-\varepsilon_1)} \times \left\{ a + \left[\frac{1}{L} \cdot \frac{\gamma_{\phi(\mathcal{U})}}{\gamma_{\phi_A(\mathcal{U}A)}} \cdot (1-\varepsilon_1) - a \right] \cdot \exp\left(-\frac{b(1-\varepsilon_1)}{L^2}\right) \tau \right\}, (13)$$

где
$$a = \frac{P}{2\gamma_{\phi A}(\mathcal{U}A)}, b = 16m\gamma_{\phi A}(\mathcal{U}A).$$

Взяв производную выражения (13) по времени, получим для скорости нестационарного процесса роста v_{μ} зависимость вида

$$v_{\mu} = \frac{dh_{\Phi(\mathcal{U})}}{d\tau} = m \cdot \left[P - \frac{2\gamma_{\Phi\mathcal{U}}}{L} (1 - \varepsilon_1) \right] \cdot \exp\left(-\frac{b(1 - \varepsilon_1)}{L^2}\right) \tau \cdot (14)$$

По мере увеличения искривлений граничных сегментов происходит рост движущей силы, которая действует на тройные стыки P_{cm} и представляет собой зависимость вида $P_{cm} = \frac{\gamma_{\Phi A}(\mu_A)}{r_{\Phi}(\mu)} - \gamma_{\Phi U} (1 - \varepsilon_2) \frac{1}{L}$, где

 $\frac{\gamma_{\phi\mu}}{L} \varepsilon_2$ – дополнительная движущая сила миграции фронта роста, связанная с некоторым термодинамическим выигрышем при попадании сферических частиц на плоскую границу раздела двух смежных пластин растущей колонии (ε_2 имеет тот же смысл, что и ε_1 ; причем в общем случае $1 > \varepsilon_2 \neq 2\varepsilon_1$). В определенный момент времени роста возникает баланс движущих сил $P_{\Sigma} = P_{cm}$:

$$P - \frac{2\gamma_{\phi,A}(\mu,A)}{r_{\phi}(\mu)} + \frac{2\gamma_{\phi,A}(\mu,A)}{r_{\phi}(\mu)} \cdot \varepsilon_{1} = \frac{\gamma_{\phi,A}(\mu,A)}{r_{\phi}(\mu)} - \gamma_{\phi,\mu}(1 - \varepsilon_{2})\frac{1}{L} \cdot (15)$$

Далее находим зависимости для порогового радиуса $r_{\Pi_{\Phi(\mathcal{U})}}$ и порогового времени τ_{Π^p} которые определяют начало стационарного процесса:

$$r_{\Pi_{\Phi}(\mathcal{U})} = \frac{(3-2\varepsilon_1)L}{2aL + \frac{\gamma_{\Phi\mathcal{U}}}{\gamma_{\Phi\mathcal{A}}(\mathcal{U}A)}} (1-\varepsilon_2), \qquad (16)$$

$$\tau_{n} = \frac{L^{2}}{(1-\varepsilon_{1})b} \cdot \ln\left\{\frac{(3-2\varepsilon_{1})\cdot\left[\gamma_{\phi ll}(1-\varepsilon_{1})-aL\gamma_{\phi l}(llA)\right]}{\gamma_{\phi ll}(1-\varepsilon_{1})(1-\varepsilon_{2})-aL\gamma_{\phi l}(llA)}\right\}.$$
 (17)

После подстановки (16) в (12) получаем выражение для определения скорости стационарного процесса

$$v_{cm} = \frac{m}{3 - 2\varepsilon_1} \left[P - \frac{2\gamma_{\phi ll}}{L} (1 - \varepsilon_1) (1 - \varepsilon_2) \right].$$
(18)

В таблице 3 показаны расчетные значения скоростей роста перлитной колонии при наличии неподвижных первичных выделений на границах раздела Φ/A и U/A (фактор включений ε_1) и Φ/U (фактор включений ε_2) при однородном распределении включений в зависимости от степени переохлаждения и величины факторов ε_1 и ε_2 . Соответствующие графики зависимости скоростей роста перлитной колонии представлены на рисунке 4.

Рис. 4. Скорости роста перлитной колонии при наличии неподвижных первичных выделений на границах раздела Φ/A и U/A (фактор включений ε_1) и Φ/U (фактор включений ε_2) при однородном распределении включений в зависимости от степени переохлаждения и величины факторов ε_1 и ε_2

Таблица 3 – Скорости роста перлитной колонии при наличии неподвижных частиц ε_1 и ε_2 ($2\varepsilon_1 = \varepsilon_2 = \varepsilon$), полученные расчетным путем при различных переохлаждениях

Температура	Расчетная скорость роста перлитной колонии v _{роста} ×10 ⁴ , см/с				
	$\epsilon_1 = 0,00125$	$\epsilon_1 = 0,005$	$\epsilon_1 = 0,015$		
превращения, с	$\epsilon_2 = 0,0025$	$\epsilon_2 = 0,01$	$\epsilon_2 = 0.03$		
700 (973К)	3,902	3,923	3,980		
650 (923K)	6,938	6,972	7,062		
600 (873K)	6,018	6,045	6,119		
550 (823 K)	3,732	3,749	3,793		
450 (723 K)	0,766	0,770	0,779		
400 (673 K)	0,258	0,259	0,262		

Анализ расчетных данных, представленных в таблице 3, а также зависимостей, показанных на рисунке 4, позволяет сделать вывод о том, что неподвижные включения избыточной фазы могут способствовать некоторому увеличению скорости продольного роста перлитной колонии.

Полученные результаты в виде кривых (рис. 3, 4) в основном повторяют зависимости, показанные на рисунке 1, но имеют некоторое отличие в характере исходя из изменения скорости процесса (со своим знаком) для различных температур переохлаждения стали.

Перечень ссылок

- Любов Б. Я. Кинетическая теория фазовых превращений / Б. Я. Любов. – М. : Металлургия. – 1969. – 264 с.
- M. Hillert. The Role of Interfacial Energy during Solid State Phase Transformations / M. Hillert. – Jerncont. Ann. 141 (1957):11. –757 p.
- Миркин И. Л. Труды Московского института стали, сб. XVIII / Миркин И. Л. – М. : МИСиС, 1941. – 5 с.
- 4. Zener C. Metals technology / Zener C. 1946, Jan., II.

- Ольшанецкий В. Е. Об ориентированном росте однофазных и двухфазных структур колониального типа / В. Е. Ольшанецкий // Нові матеріали і технології в металургії та машинобудуванні – 2002. – № 1. – С. 14–22.
- Бурке Дж. Е. Рекристаллизация и рост зерен / Бурке Дж. Е., Тарнбалл Д. // Успехи физики металлов. – М. : Металлургиздат, 1956. – Вып. 1. – С. 368–465.
- W. S. Hagel Acta Metallurgica / W.S. Hagel, G.M. Pound a. R.F. Mehl. – 1956. – Vol. 4. – № 1. –37 p.
- Салли И. В. Физические основы формирования структуры сплавов / И. В. Салли. – М. : Металлургиздат, 1963. – 219 с.
- Кривоглаз М.А. О диффузионном увлечении частиц и пор движущейся границей / М. А. Кривоглаз, А. М. Масюкевич, К. П. Рябошапка // Физика металлов и металловедение. – 1967. – Т. 24. – Вып. 6. – С. 11–29.
- Блантер М. Е. Фазовые превращения при термической обработке стали / М. Е. Блантер. – М. : Металлургиздат. – 1962. – 272 с.
- Ольшанецкий В. Е. О продольном росте колоний пластинчатих зерен в присутствии дисперсних частиц избыточной фазы.
 Случай распространения кристаллизационного фронта / В. Е. Ольшанецкий, Ю. И. Спицына // Нові матеріали і технології в металургії та машинобудуванні. 1998. № 2. С. 11–14.

Одержано 11.06.2010

Yu. I. Kononenko, V. E. Ol'shanetskiy

ABOUT KINETICS OF LAMELLAR FERRITE-CEMENTITE STRUCTURES FORMING AT OVERCOOL AUSTENITE DISINTEGRATION

Розглянуто особливості формування пластинчастих ферито-цементитних сумішей при розпаді переохолодженого аустеніту із урахуванням 1) практично повної відсутності частинок виділень; 2) при наявності рухомих дисперсних частинок первинних надлишкових фаз; 3) при наявності нерухомих мікрочастинок надлишкових фаз.

Ключові слова: перліт, аустеніт, ферит, цементит, надлишкові частинки, сталь, евтектоїдне перетворення, швидкість росту перлітної колонії, фронт росту, рухомі і нерухомі включення, стаціонарний і нестаціонарний процес росту.

The lamellar ferrite-cementite mixtures formation features in the disintegration of the supercooled austenite was considered, taking into account 1) almost complete absence of particle emissions; 2) the presence of primary excess phases mobile dispersed particles; 3) the presence of excess phases immobile particles.

Key words: pearlite, austenite, ferrite, cementite, surplus particles, steel, eutectoid transformation, pearlitic colony growth speed, growth front, mobile and immobile including, stationary and non-stationary growth process.