МОДЕЛЬ ПОВЕРХНЕВОГО ПЕРЕРОЗПОДІЛУ ДОМІШКИ ВПРОВАДЖЕННЯ ПІД ДІЄЮ ІМПУЛЬСНОГО ЛАЗЕРУ

Серед існуючих методів впливу на фізико-механічні та трібологічні властивості тонкого шару поверхні виробів з металів та сплавів особливе місце займає лазерна обробка [1–5]. Зважаючи на широке використання імпульсного лазера у виробничих процесах, залишається актуальним питання регулювання впливу такого випромінювання на перерозподіл легуючих елементів по глибині зони лазерного впливу [6, 7]. Це пов'язано з тим, що домішки впровадження є слабко зв'язаними з матрицею і легко дифундують під впливом зовнішніх факторів [8, 9]. Насамперед це стосується випадку перерозподілу вуглецю у поверхневому шарі аустенітної сталі при лазерній обробці в режимі з оплавленням чи з модуляцією добротності [10–12].

Відомо, що при дії лазерного імпульсу на матеріали прискорюються процеси дифузії атомів з поверхні в матрицю [13–16]. В роботі [13] це пояснюється захопленням атомів пружнім полем рухомих дислокаційних уступів, що генеруються внаслідок великих градієнтів термічних напружень, а сам процес описується рівнянням дифузії з додатковим членом, який враховує спрямований рух атомів. В роботі [14] теоретично та експериментально встановлено, що перенесення атомів в глибину металу при імпульсній лазерній обробці пов'язано з процесами термопластичної течії матеріалу. Очевидно, що вплив термомеханічних факторів на перерозподіл атомів домішки впровадження буде ще більш суттєвим. Особливо це стає актуальним в зв'язку зі швидким розвитком 3D технологій друкування виробів зі сплавів і навіть нержавіючої сталі, які базуються на застосуванні лазерного випромінювання [17].

В зв'язку з практичною важливістю в роботі пропонується модель дифузії атомів домішки впровадження під дією градієнтів температури та термічних напружень та приводяться розрахунки для випадку вуглецевих сталей з аустенітною структурою.

Модель

Задача про вплив пружної хвилі на перерозподіл домішки впровадження на прикладі вуглецю в зоні імпульсної лазерної дії, на відміну від попередньої моделі [18–20], складається з рівнянь теплопровідності (1), хвильових рівнянь (2), рівнянь дифузії (3) для рідкої та твердої фаз відповідно:

$$\frac{\partial T_{1}}{\partial t} = a \frac{\partial^{2} T_{1}}{\partial x^{2}} \quad \partial n s \quad 0 < x < S,$$

$$\frac{1}{a} \frac{\partial T_{2}}{\partial t} = \frac{\partial^{2} T_{2}}{\partial x^{2}} - \frac{(3\lambda + 2\mu)\alpha}{\chi} \frac{\partial U_{2}}{\partial x} \quad \partial n s \quad S < x < \infty;$$

$$(1)$$

$$\frac{\partial^{2} U_{1}}{\partial t^{2}} = C_{s}^{2} \frac{\partial^{2} U_{1}}{\partial x^{2}},$$

$$\rho \frac{\partial^{2} U_{2}}{\partial t^{2}} = (\lambda + 2\mu) \frac{\partial^{2} U_{2}}{\partial x^{2}} - \alpha (3\lambda + 2\mu) \frac{\partial T_{2}}{\partial x} - \beta_{2} \frac{\partial c_{2}}{\partial x};$$

$$(2)$$

$$\frac{\partial c_{1}}{\partial t} = D_{1} \frac{\partial^{2} c_{1}}{\partial x^{2}},$$

$$\frac{\partial c_{2}}{\partial t} = b \frac{\partial}{\partial x} (c_{2} \frac{\partial \varphi}{\partial x}),$$

$$T_{2}(x,0) = 0, \quad c_{2}(x,0) = 0,$$

$$(4)$$

граничних умов на поверхні зразка, що опромінюється (5)

початкових умов (4):

$$c_{1}(0,t) = \widetilde{c}_{0}, \ -\chi \frac{\partial T_{1}}{\partial x}\Big|_{x=0} = Aq_{0}f(t), \ U_{1}(0,t) = \widetilde{U}_{0}f(t)$$
(5)

та граничних умов на протилежній поверхні (6) (впливом умов на цій поверхні можна знехтувати у зв'язку з тим що процес перерозподілу вуглецю відбувається у приповерхневих шарах зразку (~ 200мкм)):

[©] Тітов В. М., Недоля А. В., 2021 DOI 10.15588/1607-6885-2021-2-15 ISSN 1607-6885 Нові матеріали і технології в металургії та машинобудуванні № 1 (2021)

$$T_2\Big|_{x\to\infty} = \widetilde{T}_0 , U_2\Big|_{x\to\infty} = 0, \ c_2\Big|_{x\to\infty} = \widetilde{c}_0 ,$$
(6)

а також граничних умов на межі розділу рідкої та твердої фаз

$$T_{1}(s,t) = T_{2}(s,t) = T_{nn}$$

$$\lambda_{1} \frac{\partial T_{1}}{\partial x}\Big|_{x=s(t)} - \lambda_{2} \frac{\partial T_{2}}{\partial x}\Big|_{x=s(t)} = \rho L \frac{ds}{dt}$$

$$U_{1}\Big|_{x=s(t)} = U_{2}\Big|_{x=s(t)}, \quad \frac{\partial U_{1}}{\partial x}\Big|_{x=s(t)} = \frac{\partial U_{2}}{\partial x}\Big|_{x=s(t)}$$

$$c_{1}\Big|_{x=s(t)} = c_{2}\Big|_{x=s(t)}, \quad D_{1} \frac{\partial c_{1}}{\partial x}\Big|_{x=s(t)} = D_{2} \frac{\partial c_{2}}{\partial x}\Big|_{x=s(t)}.$$
(7)

У сформульованій задачі: T – температура, U – механічне зміщення, c – концентрація вуглецю, φ – хімічний потенціал, a – коефіцієнт температуропровідності, b – рухомість атомів вуглецю у твердій фазі, T_0 – температура навколишнього середовища ($T_0 = 300K$), λ , μ – коефіцієнти Ламе, α – коефіцієнт лінійного теплового розширення, β – коефіцієнт концентраційного розширення, A – коефіцієнт поглинання за потужністю, q_0 – максимальне значення щільності потужності випромінювання, ρ – густина матеріалу зразка, χ – коефіцієнт теплопровідності, C_{1s} – швидкість звуку в розплаві, D_1 – коефіцієнт дифузії в рідкій фазі, $f(t) = Bte^{-\pi}$ – чинник часу запропонований в роботі [19].

З урахуванням того, що хімічний потенціал ф має вигляд [20]

$$\varphi = \varphi_0 + kT[\ln c_2 - \ln(1 - c_2)] + \Omega(U_0 + 9K\omega^2)c_2 - 3k\omega\varepsilon_{ll}, \qquad (8)$$

де k – стала Больцмана, $\omega = \frac{\beta}{3K}$ – лінійний коефіцієнт концентраційного розширення, $U_0 = -4k\omega^2(\frac{1-2\nu}{1-\nu})^2 -$ ефективна енергія взаємодії, Ω – об'єм одного атома тіла, $K = \lambda + \frac{2}{3}\mu$ – модуль всебічного стиску, ν – коефіцієнт Пуассона, $\varepsilon_{II} = \frac{\partial U_I}{\partial x}$ – діагональні компоненти тензора деформації.

Останнє рівняння з системи (3) набуває вигляду

$$\frac{\partial c_2}{\partial t} = \frac{\partial}{\partial x} \left(D_{e\phi\phi} \frac{\partial c_2}{\partial x} \right) - \beta \Omega b \frac{\partial}{\partial x} \left(c_2 \frac{\partial^2 U_2}{\partial x^2} \right), \tag{9}$$

де D_{ефф} ефективний коефіцієнт дифузії

$$D_{e\phi\phi} = b \left(kT_2 + \frac{\beta\omega\Omega}{3} \left(9 - 4 \left(\frac{1 - 2\nu}{1 - \nu} \right)^2 \right) c_2 \right).$$
(10)

Співвідношення (9) можна переписати у вигляді

$$D_{e\phi\phi} = D_0 \left(1 + \frac{\beta \omega \Omega}{3kT_2} \left(9 - 4 \left(\frac{1 - 2\nu}{1 - \nu} \right)^2 c_2 \right) \right). \tag{11}$$

де $D_0 = bkT_2$.

Вважаючи зміну концентрації невеликою у порівнянні з \tilde{c}_0 напишемо рівняння (8) у лінійному наближенні

$$\frac{\partial c_2}{\partial t} = D_2 \frac{\partial^2 c_2}{\partial x^2} - \beta \Omega b \widetilde{c}_0 \frac{\partial^3 U_2}{\partial x^3}, \qquad (12)$$

де

$$D_2 = b \left(kT_0 + \frac{\beta \omega \Omega}{3} \left(9 - 4 \left(\frac{1 - 2\nu}{1 - \nu} \right)^2 \right) \widetilde{C}_0 \right).$$

Таким чином, чисельний розв'язок крайової задачі (1)–(7), (12) дозволяє визначити температурний розподіл, механічне зміщення та концентрацію вуглецю для рідкої та твердої фаз.

Результати розрахунків та їхнє обговорення

За допомогою запропонованої моделі визначено вплив теплового та акустичного факторів на перерозподіл вуглецю, які виникають в наслідок дії імпульсного лазерного випромінювання.

Розрахунки проводилися при наступних значеннях параметрів та констант матеріалів (табл. 1, 2):

	4 n	•	•
Таблиця	I – Значення	параметрів дл	я розрахунку моделі

А	<i>а</i> , м ² /с	α, Κ-1	χ, Вт/м·К	q_0 , Bt/m ²	τ ₀ ,мс	ρ, Кг/м ³	γ,c ⁻¹	$D_0, \mathrm{M}^2/\mathrm{c}$	ν
0,8	6,84.10-6	1,2.10-5	42	4,7.107	4	7,8·10 ³	373,45	8.10-6	0,29

Запропонована модель була використана для розрахунку розподілу концентрації вуглецю в аустенітній сталі, з урахуванням оточуючої холодної матриці, та поздовжньої механічної хвилі, що супроводжує імпульсне лазерне випромінювання. Вважалося, що на поверхню зразку нанесена обмазка з високим вмістом вуглецю.

Таблиця 2 – Додаткові значення параметрів для розрахунку моделі

λ, Па	μ, Па	β, Па/м	\widetilde{T}_0 , K	<i>B</i> , c ⁻¹	Ω, м ³	τ ₀ , мс	\widetilde{c}_0 , мас%	${\widetilde U}_0$, M	<i>b</i> , с/кг
$1, 1 \cdot 10^{11}$	$8 \cdot 10^{10}$	$1 \cdot 10^{11}$	300	1115,7	6,2·10 ⁻²⁷	1,55	$7,8.10^{3}$	10-6	8·10 ⁻⁷

На основі запропонованої моделі було розраховано розподіл температури в рідкій та твердій фазах в зоні лазерної дії аустенітної сталі в режимі оплавлення. На рис. 1 наведено просторово-часовий розподіл у рідкій фазі, який має близький до лінійного характер зменшення температури по глибині. В твердій фазі просторово часовий розподіл температури має гіперболічний вигляд в різних часових інтервалах дії лазерного імпульсу (рис. 2).

Рис. 1. Просторово-часовий розподіл температури в рідкій фазі

Рис. 2. Просторово-часовий розподіл температури в твердій фазі

Показано, що протягом дії лазерного імпульсу зміна температури в рідкій фазі проявляється більш істотно ніж у твердій фазі, що пов'язано з більш високою швидкістю нагрівання рідкої фази. Монотонний характер змін в твердій фазі пов'язаний з перерозподілом тепла по її глибині.

Повздовжня хвиля, яка врахована в моделі, виникає в результаті дії лазерного імпульсу за рахунок істотних перепадів температури. Очевидним є, що характер розподілу механічного зміщення з часом на різних глибинах повторює характер часового розподілу потужності лазерного імпульсу та має максимум при $t_0 = 3$ мс з подальшим монотонним зменшенням. Просторово-часовий розподіл механічних зміщень наведено на рис. З. Видно що максимальне зміщення має місце при на 3 мс, а розподіл механічного зміщення по глибині для кожного моменту часу має постійний характер.

Рис. 3. Просторово-часовий розподіл механічних зміщень

Рис. 4. Розподіл концентрації вуглецю по глибині зразку в різні моменти часу: 1) 1 мс, 2) 2 мс, 3) 3мс, 4) 4мс, 5) 6мс, 6) 8мс, 7) 10мс, 8) 12мс, 9) 14мс

Використовуючи запропоновану модель, було розраховано розподіл концентрації вуглецю в зоні лазерного впливу, а також проаналізовані результати розрахунку зміни концентрації вуглецю в аустеніті по глибині зони лазерного впливу для різних моментів часу дії або післядії лазерного імпульсу. Відомо що рівноважна концентрація вуглецю у залізо-нікелевих сталях складає 1,55 масових відсотків. Що стосується максимально можливої концентрації то значення її вибирається згідно з діаграмою стану системи Fe-Me-C. Нами була обрана концентрація 2,14 мас.% вуглецю. Вибір максимально можливої концентрації вуглецю продиктовано можливістю фіксації цього стану при кімнатній температурі в наслідок високої швидкості охолодження розплавленої поверхні оточуючою холодної матриці при локальному нагріві імпульсним лазером (10⁵ K/c) поверхневої обмазки, яка містить вуглець.

Більш детальне дослідження розподілу вуглецю в зоні лазерного впливу, під час дії та післядії лазерного імпульсу показало, що в інтервалі існування рідкої фази на поверхні зразку (8 мс) спостерігається переважне збільшення концентрації вуглецю на поверхні до максимальних значень з подальшим зменшенням її по глибині (рис. 4 криві 1–6). Однак в часових інтервалах утворення твердої фази спостерігається поступовий перерозподіл вуглецю по глибині зі зменшенням його концентрації на поверхні (рис.4 криві 7–9). При цьому максимум концентрації зміщується наприклад з 50 мкм при 12 мс до 70 мкм при 14 мс, а рівень зміни концентрації по глибині також буде різним. Така поведінка зміни концентрації вуглецю в аустеніті в зоні лазерної дії підтверджується експериментальними даними [21], що вказує на адекватність обраної моделі.

Висновки

 Запропонована математична модель для оцінки перерозподілу вуглецю в аустенітній сталі під впливом імпульсного лазерного випромінювання в режимі оплавлення поверхні з урахуванням поздовжньої механічної хвилі, яка виникає в результаті термічного перепаду між зоною лазерної дії та оточуючою холодною матрицею. В рамках запропонованої моделі проведені розрахунки температурного розподілу в рідкій та твердій фаз в різні моменти дії та післядії лазерного імпульсу.

2. Показано істотне зменшення температури в рідкій фазі по лінійному закону з подальшим монотонним (гіперболічним) її зменшенням в твердій фазі в результаті дії оточуючої холодної матриці.

3. Встановлено, що часовий характер розподілу механічного зміщення в зоні лазерного впливу якісно повторює часову залежність розподілу потужності в лазерному імпульсу з максимумом при $t_0 = 3$ мс, а саме зміщення є постійним на різних глибинах, хоча абсолютне його значення є різним для кожного моменту часу.

4. Розрахунок концентрації вуглецю в аустеніті в часових межах дії лазерного імпульсу показав, що розчинність вуглецю на поверхні зразку в перші мілісекунди дії лазерного імпульсу істотно вище (0,17 мас. %) ніж в кінці дії імпульсу (0,08 мас. %), що можна пояснити комплексним впливом поздовжньої механічної хвилі, яка випереджує теплову хвилю та немонотонним часовим характером розподілу потужності в лазерному імпульсі.

5. Порівняння розподілу концентрації вуглецю під час дії та після дії лазерного імпульсу показало, що в умовах існування рідкої фази, збільшення концентрації вуглецю спостерігається переважно на поверхні до максимальної можливої концентрації для вибраної системи згідно діаграми стану. При формуванні твердої фази в зоні лазерного впливу після дії лазерного імпульсу відбувається перерозподіл вуглецю з поверхні в глибину зони з формуванням максимальної концентрації в інтервалі 50–70 мкм для моментів часу післядії 12–14 мс. Цей перерозподіл виникає за рахунок масопереносу внаслідок великої рухливості вуглецю у твердій фазі у порівнянні з іншими елементами сплаву.

Запропонована модель може бути використана для оптимізації режимів імпульсної лазерної обробки аустенітних та інших сталей і сплавів.

Список літератури

1. Laser Precision Microfabrication, Springer Series in Materials Science 135 / K. Sugioka et al. (eds.). – Berline, Heidelberg, Springer-Verlag: 2010), DOI 10.1007/978-3-642-10523-4_4.

2. Gachot C. Laser Surface Texturing of TiAl Multilayer Films-Effects of Microstructure and Topography on Friction and Wear / C. Gachot, Ph. Grützmacher and A. Rosenkranz. – Lubricants 2018, 6(2), 36; https://doi.org/10.3390/lubricants6020036.

3. J. Grun. Laser Surface Hardening. [In: Wang Q.J., Chung YW. (eds) Encyclopedia of Tribology] (Boston, MA, USA, Boston: 2013), DOI: https://doi.org/10.1007/978-0-387-92897-5 1007.

4. Григорьянц А. Г. Технологические процессы лазерной обработки / А. Г. Григорьянц, И. Н. Шиганов, А. И. Мисюров. – М. : Изд-во МГТУ им. Н. Э. Баумана, 2006. – 664 с.

5. Laser modification of the materials surface layer – a review paper / J. Kusinski, S. Kac, A. Kopia, A. and etc. // B Pol Acad Sci-Tech. 60, No. 4, 711 – 2012.

6. Pogorelov A. E. Mass transfer mechanism in real crystals by pulsed laser irradiation / A. E. Pogorelov, K. P. Ryaboshapka, A. F. Zhuravlyov // J Appl Phys. 92, 5766 (2002); https://doi.org/10.1063/1.1512972

7. Гусев А. А. Перспективы импульсного лазерного легирования и наплавки / Гусев А. А. // Известия Самарского НЦ РАН, 14, № 6. – 2012. – С. 247 – 253.

8. Данільченко В. Ю. Дифузійні характеристики вуглецю у фазонагартованому сплаві H32 / В. Ю. Данільченко, В. Ф. Мазанко, В. Є. Яковлев // Вісник Черкаського університету. – 2013. – Вип. 16 (269). – С. 19–24.

9. Філоненко Н. Ю. Вплив попередньої пластичної деформації на дифузію бору та вуглецю в сплавах на основі заліза / Н. Ю. Філоненко, Л. І. Федоренков // Металознавство та обробка металів. – 2010. – № 2. – С. 46–50.

10. Гуреев Д. М. Влияние лазерного воздействия на перераспределение углерода в поверхностных слоях инструментальных сталей / Д. М. Гуреев // Физика и химия обработки материалов. – 1994. – № 1. – С. 27–39.

11. Измайлов Е. А. Направленное перемещение атомов углерода в сталях, стимулированное лазерным излучением / Е. А. Измайлов, В. Г. Горбач // Докл. АН СССР. – 1986. – Т. 286, № 2. – С. 348–351.

12. Сафонов А. Н. Диффузионное перераспределение углерода в углеродистых сталях под воздействием высокоэнергетических источников / А. Н. Сафонов, Е. А. Дубровина // Квантовая электроника. – 1998. – Т. 25, № 8. – С. 701–704.

13. Laser-Stimulated Mass Transfer in Metals / M. E. Gurevich, L .N. Larikov, V.G. Novitskii and etc. // Phys. Stat. Sol. (A). – Vol. 76. – 1983. – C. 479–484.

14. О природе массопереноса в металлах при лазерном облучении / М. Е. Гуревич, А. Ф. Журавлев, Ю. В. Корнюшин, А. Е. Погорелов // Металлофизика и новейшие технологии. – 1985. – Т. 7, № 2. – С. 113–114.

15. Волосевич П. Ю. Особенности структурных изменений в армко-железе после воздействия докритических потоков импульсного излучения ОКГ / П. Ю. Волосевич, А. Е. Погорелов // Поверхность. Физика, химия, механика. – 1986. – № 9. – С. 126–130.

16. Лазерные технологии обработки материалов: современные проблемы фундаментальных исследований

и прикладных разработок ; под ред. В. Я. Панченко. – М. : Физматлит, 2009. – 664 с.

17. Zhongji Sun, Xipeng Tan, Shu Beng Tor & Chee Kai Chua Simultaneously enhanced strength and ductility for 3D-printed stainless steel 316L by selective laser melting. NPG Asia Materials, 10, 127 (2018), https://doi.org/10.1038/s41427-018-0018-5

18. Влияние импульсного лазерного воздействия на перераспределение углерода в стали / И. Г. Величко, В. Е. Данильченко, А. В. Недоля и др. // Доповіді НАН України. – 2008. – № 9. – С. 93–98.

19. Анпілогов Д. І. Вплив фактору часу імпульсного лазерного випромінювання на температурне поле в зоні теплової дії / Д. І. Анпілогов, В.В. Гіржон // УФЖ. – 1997. – № 3. – С. 306–309.

20. Любов Б. Я. Диффузионные процессы в неоднородных твердых средах / Б. Я. Любов. – М. : Наука, 1981. – 296 с.

21. Nedolya A.V. XRPD application for laser-treated surface of Fe-based alloys study / A.V. Nedolya // Nuovo Cimento della Societa Italiana di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics. 19(2–4), 609 (1997).

Одержано 12.07.2021

© ^{*}Тітов І. М.¹, Недоля А. В.²

¹ Iнженер, UAD-Systems

² Канд. фіз.-мат. наук, доцент кафедри прикладної фізики і наноматеріалів, Запорізький

національний університет; м. Запоріжжя, Україна

Titov I., Nedolya A. Model of the impurities redistribution in the surface layer of an alloy under the action of pulsed laser radiation

^{*}В роботі брав участь О. В. Лисенко